Tips And Tricks For Speedy Calculations Module 3 Multiplication

<<2/”>a >body>



 

TIPS AND TRICKS FOR SPEEDY CALCULATIONS – MODULE III – MULTIPLICATION

In this module we deal with techniques using which we can multiply two numbers in an unorthodox but quick manner. Firstly we take up some specific cases using which we come to generalized multiplication of any two given numbers.

  1. Multiplying two numbers starting with same digit(s)

 

Let us take an example of one two digits numbers and the other three digit numbers to be multiplied with each other;

 

  1. Multiply 34 and 37

To multiply 34×37, we know they are in the base 30. Hence the reference point (base) will be 30.

Step 1.

Determine how much more is 34 from 30. The answer is 4

Determine how much more is 37 from 30. The answer is 7

Step 2.

Either add 4 to 37 = 41 or 7 to 34 = 41.

The result will be same always.

Step 3.

Multiply the resultant number from step 2 by the base, which is in this case 30

41×30 = 41x3x10 = 123×10 = 1230

Step 4.

Add to the resultant of step 3 the product of the numbers obtained from step 1. This will give you the answer.

1230+ (4×7) = 1230 + 28 = 1258

 

  1. Multiple 234 x 232

From step 1 and step 2 above, 234 +2 = 236 or 232 + 4 = 236

From step 3: 236 x 230 = 54280

From step 4: 54280 + (4×2) = 54288

 

  1. Multiplying 5 with an even number

Halve the number you are multiplying by 5 and place a zero after the number.

Example:

A) 5 × 136, half of 136 is 68, add a zero for an answer of 680.

B) 5 × 874, half of 874 is 437; add a zero for an answer of 4370.

 

  1. Multiplying 5 with an odd number

Subtract one from the number you are multiplying, then halve that number and place a 5 after the resulting number.

Example:

343 x 5 = (343-1)/2 | 5 = 1715

 

  1. Multiplying by 9, 99, 999, 9999 and so on

 

Let X be 9 or 99 or 999 or 9999 and so on and Y represent the other number.

This technique should follow two conditions;

  1. The number Y should end with 9
  2. The digits in number Y should not be more than that in number X.

Let us now take some examples;

  1. Multiply 789 × 999

You will get the answers in two parts,

The left hand side of the answer: subtract 1 from 789, which is 788

The right hand side of the answer subtract 789 from 1000 = 1000-789= 211

Thus, 999 x 789 = 789-1   |  1000-789 = 788, 211 (answer)

{for the right hand side of the answer, 789 should be subtracted from (999+1)

  1. Multiply 99999 x 78  = 78-1   | 100000 – 78 = 7799922

{78 should be subtracted from (99999+1)

  1. Multiply 1203579 × 9999999  = 1203579-1   | 10000000- 1203579 =12035788796421
  1. Multiplying by 11

Assume that there are two invisible 0 (zeroes), one in front and one behind the number to be multiplied with 11. Take an example of 234, assume it to be 0 2 3 4 0

Start from the right, add the two adjacent Zeros and keep on moving left 02340. Add the last zero to the digit in the ones column (4), and write the answer below the ones column. Then add 4 with digit on the left i.e. 3. Next add 3 with 2. Next 2 with 0.

0+4 = 4

4+3 = 7

3+2 = 5

2+0 = 2

So answer is 2574. Further examples;

  1. 36 x 11 = 0+3   |   3+6   | 6+0  = 396
  2. 74 x 11 =0+ 7 |  7+4 |  4+0 =  7  | 11 |  4 = 814   (1 of 11 is carried over and added to next digit, so 7+1 = 8 )
  3. 6349 x 11 = (0+6)  |  (6+3)   |   (3+4)   |   (4+9)  |   9+0 =  69839

 

  1. Multiplying a two digit number by 111

To multiply a two-digit number by 111, add the two digits and if the sum is a single digit, write this digit TWO TIMES in between the original digits of the number. Some examples:

36×111= 3996
54×111= 5994

The same idea works if the sum of the two digits is not a single digit, but you should write down the last digit of the sum twice, but remember to carry if needed. So

57×111= 6327 because 5+7=12, but then you have to carry the one twice.

  1. Multiplying a three digit number by 111

123×111 = 1 | 3 (=1+2) | 6 (=1+2+3) | 5 (=2+3) | 3

Similarly, 241×111 = 26751

For an example where carrying is needed

Say, 352×111=3 | 8 (=3+5) | 10 (=3+5+2)| 7 (=5+2)| 2
= 3 | 8 | 10 | 7 | 2 = 3 | 9 | 0 | 7 | 2
= 39072

  1. Multiplying any number by 21

 

The process is a bit complicated and shall be explained by means of an example;

Multiply 5392 by 21. The first digit of the answer will be equal to twice the first digit of 5392. To make the rule consistent assume there is a zero before the number.

So it looks like 05392

0 + (5 x 2) = 10

Next, add the first digit of the given number, 5, to twice the second digit, 3.

5 + (2 x 3) = 11

Since we must have a single digit at each step, the tens place of the result above will be carried over and added to the previous number.

1  | (0 +1) | 1 = 111

The first 3 digits up to this point are 111. The next digit is obtained by adding 3 to twice of 9

3 + (2 x 9) = 21

Thus the first four digits of the answer are –

1  | 1  |  (1 + 2)  | 1 = 1131   (carried over 2 added to the last digit of 111 )

The next digit is obtained by adding 9 to twice of 2

9 + (2 x 2) = 13

Thus the first five digits of the answer are –

1  | 1  | 3  |  (1+1)  |  3

The last digit of the answer will be same as the last digit of the number itself.

Hence, in this case last digit will be 2. Therefore the answer is 113232

 

  1. Multiply any two digit numbers with 10 being the sum of their unit places

 

Principle: You will get the answer in two parts. First part, to get left hand side of the answer: multiply the left most digit(s) by its successor. Second part, to get right hand side of the answer: multiply the right most digits of both the numbers.

  1. Multiply 45 and 46;

First part: 4 x (4+1)

Second part: (4 x 6)

Combined effect:  (4 x 5)  | (4 x 6) = 2024

  1. 37 x 33 = (3 x (3+1)) |  (7 x 3) = (3 x 4) | (7 x 3) = 1221
  2. 11 x 19 = (1 x (1+1)) |  (1 x 9) = (1 x 2)  | (1 x 9) = 209
  1. Multiply any three digit numbers with 10 being the sum of their unit places

The technique as discussed above can be extended to three digit numbers also. Tis will be made clear by solving certain examples;

  1. Multiply 292 and 208;

Here 92 + 08 = 100, L.H.S portion is same i.e. 2

292 x 208 = (2 x 3) x 10 | 92 x 8 (Note: if 3 digit numbers are multiplied, L.H.S has to be multiplied by 10)

60 | 736 (for 100 raise the L.H.S. product by 0) = 60736.

  1. 848 X 852

Here 48 + 52 = 100,

L.H.S portion is 8 and its next number is 9.

848 x 852 = 8 x 9 x 10 | 48 x 52 (Note: For 48 x 52, use methods shown above)

720 | 2496

= 722496.

[L.H.S product is to be multiplied by 10 and 2 to be carried over because the base is 100].

C)  693 x 607 = 6 x 7 x 10 | 93 x 7 = 420 / 651 = 420651

  1. Multiply two numbers close to 100 but greater than 100.

Principle: You will get the answer in two parts. First part, to get left hand side of the answer we add the difference between 100 and either of the numbers to the other number. For the Second part, we multiply the difference from 100 of both the numbers. Consider the following examples;

  1. 103 x 104 = 10712

The answer is in two parts: 107 and 12,

107 is just 103 + 4 (or 104 + 3), and 12 is just 3 x 4.

  1. 107 x 106 = 11342

First part; 107 + 6 = 113 and Second part; 7 x 6 = 42

  1. 123 x 103 = 12669

(123 + 3) | (23 x 3) = 126 | 69 =12669

If the multiplication of the offsets is more than 100 then this method won’t work. For example 123 x 105. Here offsets are 23 and 5. Multiplication of 23 and 5 is 115 which are more than 100. So this method won’t work. But it can still work with a little modification. Consider the following examples:

  1. 122 x 123 = 15006

Step 1: 22 x 23 = 506 (as done earlier)

Step 2: 122 + 23 (as done earlier)

Step 3: Add the 5 (digit at 100s place) of 506 to step 2

Answer: (122 + 23 + 5) | (22 x 23) = 150 | 06 = 15006

 

  1. 123 x 105 (Different representation but same method)

123 + 5 = 128

23 x 5 = 115

128 | 115 = 12915

 

  1. Multiply two numbers close to 100 but less than 100.

Principle: You will get the answer in two parts. First part, to get left hand side of the answer: Add the difference between 100 and either of the numbers to the other number. Second part, to get right hand side of the answer: multiply the difference from 100 of both the numbers. Consider the following examples;

  1. Multiply 93 and 94;

First part: 93 – 100 = – 7; Add this to the other number, thus 94 + (- 7) = 87

Or you can start with the other number 94;

94 – 100 = – 6; Add this to the other number, thus 93 + (- 6) = 87

Result will be same in both the cases

Second part:

Multiply the difference from 100 of both the numbers.

Hence, (93 – 100) x (94 – 100) = -7 x -6 = 42

Combined effect:  87  | 42 = 8742

  1. Multiply 92 and 86;

Step 1: 92 + (86 – 100) = 78

Step 2: (92 – 100) x (86 – 100) = -8 x -14 = 112

Combined effect will look like this: 78 | 112

Step 3: Add the 1 (digit at 100s place) of 112 to 78

Answer: 78 + 1 | 12 = 79 | 12 = 7912

  1. Multiply two numbers close to 100 one being less and the other more than 100

 

Principle is same as given above so we directly take up some examples;

 

  1. Multiply 96 and 103;

First part: 96 – 100 = – 4; Add this to the other number, thus 103 + (- 4) = 99

Or you can start with the other number 103;

103 – 100 = 3; Add this to the other number, thus 96 + 3 = 99

Result will be same in both the cases

Second part:

Multiply the difference from 100 of both the numbers.

Hence, (96 – 100) x (103 – 100) = -4 x 3 = – 12

Combined effect:  99 | -12 = 8742

Now to remove negative sign from the right side, we have to take one from the left hand side. 1 when shifted from left to right becomes 100. Thus we’ll have:

Combined effect:  99 – 1 | 100 – 12 = 9888

 

  1. Multiply 89 and 113;

= 89 + 13 | -11 x 13

= 102 | -143

In this case, right side number is greater than 100, so we need to subtract it from next higher 100, i.e. 200. Hence, we’ve to take 2 from left hand side, so that we get 200 on the right hand side.

= 102 – 2 | 200 – 143 = 100 | 57 = 10057

  1. Multiply a number with multiples of 11, that is, 22, 33, 44 and so on

As we have by now learned the short cuts to multiply any number with 11, understanding multiplication with 22, 33, 44 and so on will now be easier. These are themselves multiples of 11 and to some extent the principles of multiplications are same. This has been explained with examples given below;

  1. Multiplication with 22, the rule is (number +next number)*2

Let us look at it step by step –
Step 1:
 For sake of simplicity, assume that there are two invisible 0 (zeroes) on both ends of the given number.
Say if the number is 
786, assume it to be 0 7 8 6 0

Step 2: Start from the right, add the two adjacent digits and multiply by 2. Keep on moving left.
07860
Add the last zero to the digit in the ones column (6), and multiply by 2. Write the answer below the ones column.
Then add this 6 with digit on the left i.e. 8 and multiply by 2.
Next add 8 with 7 and multiply with 2.
Next add 7 with 0 and multiply by 2.
(0+7)*2     |    (7+8)*2  |    (8+6)*2   |   (6+0)*2
=   14   |   30   |  28   |  12

Step 3: Start from right most digit. Keep only the unit’s digit. Carryover and add the ten’s digit to the next number to the left. Doing this we get the answer as 17292.

  1. multiplication with 33, the rule is (number +next number)*3
  2. multiplication with 44, the rule is (number +next number)*4

And so on and so forth.


,

Multiplication is one of the four basic arithmetic operations, along with addition, subtraction, and division. It is the process of combining two numbers to create a new number. Multiplication can be done in a variety of ways, including the standard algorithm, the FOIL method, and chunking.

The standard algorithm for multiplication is the most common way to multiply two numbers. It involves lining up the numbers so that the digits in each place value are aligned, and then multiplying each digit in the first number by each digit in the second number. The products are then added together to find the final answer.

The FOIL method is a shortcut for multiplying two binomials. It stands for “First, Outer, Inner, Last,” and it involves multiplying the first terms of each binomial, then the outer terms, then the inner terms, and then the last terms. The products are then added together to find the final answer.

Chunking is a strategy for multiplying large numbers that involves breaking them down into smaller chunks. For example, to multiply 12345 by 6789, you could break 12345 down into 12000, 300, and 45, and then multiply each of those chunks by 6789. The products would then be added together to find the final answer.

Lattice multiplication is a visual method for multiplying two numbers. It involves drawing a lattice with rows and columns, and then writing the numbers in the appropriate places. The products are then found by multiplying the numbers in each row and column, and then adding the products together.

Partial products is a method for multiplying two numbers that involves writing down the products of each digit in the first number by each digit in the second number. The products are then added together to find the final answer.

Karatsuba multiplication is a fast algorithm for multiplying two large numbers. It works by breaking the numbers down into smaller parts and then multiplying the parts using the standard algorithm. The products of the parts are then combined to find the final answer.

Strassen multiplication is another fast algorithm for multiplying two large numbers. It works by breaking the numbers down into even smaller parts and then multiplying the parts using the standard algorithm. The products of the parts are then combined to find the final answer.

Fast Fourier transform multiplication is a very fast algorithm for multiplying two large numbers. It works by converting the numbers into a series of frequencies, and then multiplying the frequencies together. The products of the frequencies are then converted back into numbers to find the final answer.

Multiplication is a fundamental skill that is used in many different areas of mathematics. It is important to be able to multiply quickly and accurately in order to be successful in mathematics. The tips and tricks in this ARTICLE can help you to improve your multiplication skills.

Here are some additional tips for improving your multiplication skills:

  • Practice regularly. The more you practice, the better you will become at multiplication.
  • Use a variety of methods. There are many different ways to multiply numbers. Experiment with different methods to find the ones that work best for you.
  • Make sure you understand the concepts. It is important to understand the concepts behind multiplication in order to be able to multiply quickly and accurately.
  • Don’t be afraid to ask for help. If you are struggling with multiplication, don’t be afraid to ask for help from a teacher, parent, or tutor.

Tips and Tricks for Speedy Calculations Module 3: Multiplication

What is the fastest way to multiply two numbers?

There are many different ways to multiply two numbers. The fastest way will depend on the numbers you are multiplying and your own personal preferences. Some common methods include:

  • The standard algorithm: This is the method that is most commonly taught in schools. It involves breaking down the numbers into their place values and then multiplying each place value separately.
  • Chunking: This method involves breaking the numbers into smaller chunks that are easier to multiply. For example, to multiply 34 x 56, you could break it down into 30 x 50 + 4 x 6 = 1500 + 24 = 1524.
  • Lattice multiplication: This is a visual method that can be helpful for people who are visual learners. It involves drawing a grid and then multiplying each number in the grid separately.
  • Finger multiplication: This is a method that can be used to multiply any two numbers. It involves using your fingers to represent the numbers and then performing the multiplication on your fingers.

What are some tips for multiplying quickly?

Here are a few tips for multiplying quickly:

  • Practice regularly. The more you practice, the faster you will become at multiplying.
  • Use a method that works for you. There are many different ways to multiply, so find a method that you are comfortable with and that works for you.
  • Break down the numbers. If you are multiplying two large numbers, try breaking them down into smaller chunks that are easier to multiply.
  • Use a calculator. If you are struggling to multiply a number, you can always use a calculator.

What are some common mistakes to avoid when multiplying?

Here are a few common mistakes to avoid when multiplying:

  • Making careless errors. When you are multiplying, it is important to pay attention to the details and to double-check your work.
  • Not using a method that works for you. There are many different ways to multiply, so find a method that you are comfortable with and that works for you.
  • Not practicing regularly. The more you practice, the faster you will become at multiplying.

What are some Resources for Learning more about multiplication?

Here are a few resources for learning more about multiplication:

  • Books: There are many books available on the topic of multiplication. Some popular books include “Multiplication Made Easy” by Marilyn Burns and “How to Multiply Like a Pro” by Randy Moreland.
  • Websites: There are many websites that offer resources on multiplication. Some popular websites include Khan Academy and Math is Fun.
  • Apps: There are many apps available that can help you learn about multiplication. Some popular apps include Math Blaster and Prodigy.
  • Videos: There are many videos available on YouTube that can teach you about multiplication. Some popular channels include Khan Academy and Numberphile.
  1. What is the product of 12 and 13?
    (A) 156
    (B) 162
    (C) 168
    (D) 174

  2. What is the product of 14 and 15?
    (A) 210
    (B) 214
    (C) 218
    (D) 222

  3. What is the product of 16 and 17?
    (A) 272
    (B) 276
    (C) 280
    (D) 284

  4. What is the product of 18 and 19?
    (A) 342
    (B) 346
    (C) 350
    (D) 354

  5. What is the product of 20 and 21?
    (A) 420
    (B) 424
    (C) 428
    (D) 432

  6. What is the product of 22 and 23?
    (A) 486
    (B) 490
    (C) 494
    (D) 498

  7. What is the product of 24 and 25?
    (A) 600
    (B) 604
    (C) 608
    (D) 612

  8. What is the product of 26 and 27?
    (A) 702
    (B) 706
    (C) 710
    (D) 714

  9. What is the product of 28 and 29?
    (A) 828
    (B) 832
    (C) 836
    (D) 840

  10. What is the product of 30 and 31?
    (A) 930
    (B) 934
    (C) 938
    (D) 942

  11. What is the product of 32 and 33?
    (A) 1056
    (B) 1060
    (C) 1064
    (D) 1068

  12. What is the product of 34 and 35?
    (A) 1180
    (B) 1184
    (C) 1188
    (D) 1192

  13. What is the product of 36 and 37?
    (A) 1302
    (B) 1306
    (C) 1310
    (D) 1314

  14. What is the product of 38 and 39?
    (A) 1428
    (B) 1432
    (C) 1436
    (D) 1440

  15. What is the product of 40 and 41?
    (A) 1640
    (B) 1644
    (C) 1648
    (D) 1652

  16. What is the product of 42 and 43?
    (A) 1862
    (B) 1866
    (C) 1870
    (D) 1874

  17. What is the product of 44 and 45?
    (A) 2080
    (B) 2084
    (C) 2088
    (D) 2092

  18. What is the product of 46 and 47?
    (A) 2302
    (B) 2306
    (C) 2310
    (D) 2314

  19. What is the product of 48 and 49?
    (A) 2528
    (B) 2532
    (C) 2536
    (D) 2540

  20. What is the product of 50 and 51?
    (A) 2750
    (B) 2754
    (C) 2758
    (D