Linear Algebra
0
either 0 or 1
one of 0, 1 or -1
any real number other than 5
Answer is Right!
Answer is Wrong!
22. The sum of the eigen values of the matrix given below is \[\left[ {\begin{array}{*{20}{c}} 1&2&3 \\ 1&5&1 \\ 3&1&1 \end{array}} \right].\] A. 5 B. 7 C. 9 D. 18
23. The eigen values of a (2 Ã 2) matrix X are -2 and -3. The eigen values of the matrix (X + $$I$$) (X + 5$$I$$) are A. -3, -4 B. -1, -2 C. -1, -3 D. -2, -4
-3, -4
-1, -2
-1, -3
-2, -4
Answer is Right!
Answer is Wrong!
24. If the following system has non-trivial solution, px + qy + rz = 0 qx + ry + pz = 0 rx + py + qz = 0 then which one of the following options is TRUE? A. p – q + r = 0 or p = q = -r B. p + q – r = 0 or p = -q = r C. p + q + r = 0 or p = q = r D. p – q + r = 0 or p = -q = -r
p - q + r = 0 or p = q = -r
p + q - r = 0 or p = -q = r
p + q + r = 0 or p = q = r
p - q + r = 0 or p = -q = -r
Answer is Right!
Answer is Wrong!
25. Let N be a 3 by 3 matrix with real number entries. The matrix N is such that N2 = 0. The eigen values of N are A. 0, 0, 0 B. 0, 0, 1 C. 0, 1, 1 D. 1, 1, 1
0, 0, 0
0, 0, 1
0, 1, 1
1, 1, 1
Answer is Right!
Answer is Wrong!
26. Consider the following matrix. \[{\text{A}} = \left[ {\begin{array}{*{20}{c}} 2&3 \\ {\text{x}}&{\text{y}} \end{array}} \right]\] If the eigen values of A are 4 and 8, then A. x = 4, y = 10 B. x = 5, y = 8 C. x = -3, y = 9 D. x = -4, y = 10
x = 4, y = 10
x = 5, y = 8
x = -3, y = 9
x = -4, y = 10
Answer is Right!
Answer is Wrong!
27. The inverse of the 2 Ã 2 matrix \[\left[ {\begin{array}{*{20}{c}} 1&2 \\ 5&7 \end{array}} \right]\] is A. \[\frac{1}{3}\left[ {\begin{array}{*{20}{c}} { – 7}&2 \\ 5&{ – 1} \end{array}} \right]\] B. \[\frac{1}{3}\left[ {\begin{array}{*{20}{c}} 7&2 \\ 5&1 \end{array}} \right]\] C. \[\frac{1}{3}\left[ {\begin{array}{*{20}{c}} 7&{ – 2} \\ { – 5}&1 \end{array}} \right]\] D. \[\frac{1}{3}\left[ {\begin{array}{*{20}{c}} { – 7}&{ – 2} \\ { – 5}&{ – 1} \end{array}} \right]\]
”[rac{1}{3}left[
Answer is Right!
Answer is Wrong!
28. How many solutions does the following system of linear equations have? -x + 5y = -1; x – y = 2; x + 3y = 3 A. infinitely many B. two distinct solutions C. unique D. none
infinitely many
two distinct solutions
unique
none
Answer is Right!
Answer is Wrong!
29. Which one of the following does NOT equal \[\left| {\begin{array}{*{20}{c}} 1&{\text{x}}&{{{\text{x}}^2}} \\ 1&{\text{y}}&{{{\text{y}}^2}} \\ 1&{\text{z}}&{{{\text{z}}^2}} \end{array}} \right|?\] A. \[\left| {\begin{array}{*{20}{c}} 1&{{\text{x}}\left( {{\text{x}} + 1} \right)}&{{\text{x}} + 1} \\ 1&{{\text{y}}\left( {{\text{y}} + 1} \right)}&{{\text{y}} + 1} \\ 1&{{\text{z}}\left( {{\text{z}} + 1} \right)}&{{\text{z}} + 1} \end{array}} \right|\] B. \[\left| {\begin{array}{*{20}{c}} 1&{{\text{x}} + 1}&{{{\text{x}}^2} + 1} \\ 1&{{\text{y}} + 1}&{{{\text{y}}^2} + 1} \\ 1&{{\text{z}} + 1}&{{{\text{z}}^2} + 1} \end{array}} \right|\] C. \[\left| {\begin{array}{*{20}{c}} 0&{{\text{x}} – {\text{y}}}&{{{\text{x}}^2} – {{\text{y}}^2}} \\ 0&{{\text{y}} – {\text{z}}}&{{{\text{y}}^2} – {{\text{z}}^2}} \\ 1&{\text{z}}&{{{\text{z}}^2}} \end{array}} \right|\] D. \[\left| {\begin{array}{*{20}{c}} 2&{{\text{x}} + {\text{y}}}&{{{\text{x}}^2} + {{\text{y}}^2}} \\ 2&{{\text{y}} + {\text{z}}}&{{{\text{y}}^2} + {{\text{z}}^2}} \\ 1&{\text{z}}&{{{\text{z}}^2}} \end{array}} \right|\]
”[left|
Answer is Right!
Answer is Wrong!
30. The eigen values of a skew-symmetric matrix are A. always zero B. always pure imaginary C. either zero or pure imaginary D. always real
always zero
always pure imaginary
either zero or pure imaginary
always real
Answer is Right!
Answer is Wrong!