and [D] are symmetric” option2=”Both [S] and [D] are skew-symmetric” option3=”[S] is skew-symmetric and [D] is symmetric” option4=”[S] is symmetric and [D] is skew-symmetric” correct=”option1″]
2 D. 1, 2, 3" class="read-more button" href="https://exam.pscnotes.com/mcq/consider-the-matrix-as-given-below-left-beginarray20c-123-047-003-endarray-right-which-one-of-the-following-options-provides-the-correct-values-of-the-eig/#more-20016">Detailed SolutionConsider the matrix as given below: \[\left[ {\begin{array}{*{20}{c}} 1&2&3 \\ 0&4&7 \\ 0&0&3 \end{array}} \right]\] Which one of the following options provides the CORRECT values of the eigen values of the matrix? A. 1, 4. 3 B. 3, 7, 3 C. 7, 3, 2 D. 1, 2, 3
class="read-more button" href="https://exam.pscnotes.com/mcq/given-matrix-left-texta-right-left-beginarray20c-4213-6347-2101-endarray-right-the-rank-of-the-matrix-is-a-4-b-3-c-2-d-1/#more-20014">Detailed SolutionGiven Matrix \[\left[ {\text{A}} \right] = \left[ {\begin{array}{*{20}{c}} 4&2&1&3 \\ 6&3&4&7 \\ 2&1&0&1 \end{array}} \right],\] the rank of the matrix is A. 4 B. 3 C. 2 D. 1
1 C. 2 D. Infinite" class="read-more button" href="https://exam.pscnotes.com/mcq/the-number-of-solutions-of-the-simultaneous-algebraic-equation-y-3x-3-and-y-3x-5-is-a-zero-b-1-c-2-d-infinite/#more-20013">Detailed SolutionThe number of solutions of the simultaneous algebraic equation y = 3x + 3 and y = 3x + 5 is: A. zero B. 1 C. 2 D. Infinite
2 C. 3 D. 4" class="read-more button" href="https://exam.pscnotes.com/mcq/the-rank-of-the-matrix-left-beginarray20c-41-1-1-1-1-7-31-endarray-right-is-a-1-b-2-c-3-d-4/#more-20010">Detailed SolutionThe rank of the matrix \[\left[ {\begin{array}{*{20}{c}} { – 4}&1&{ – 1} \\ { – 1}&{ – 1}&{ – 1} \\ 7&{ – 3}&1 \end{array}} \right]\] is A. 1 B. 2 C. 3 D. 4
A. BT = -B B. BT = B C. B-1 = B D. B-1 = BT" class="read-more button" href="https://exam.pscnotes.com/mcq/a-square-matrix-b-is-skew-symmetric-if-a-bt-b-b-bt-b-c-b-1-b-d-b-1-bt/#more-20008">Detailed SolutionA square matrix B is skew-symmetric if A. BT = -B B. BT = B C. B-1 = B D. B-1 = BT