11. The impulse response functions of four linear systems S1, S2, S3, S4 are given respectively by $${h_1}\left( t \right) = 1,$$ $${h_2}\left( t \right) = u\left( t \right),$$ $${h_3}\left( t \right) = \frac{{u\left( t \right)}}{{t + 1}},$$ $${h_4}\left( t \right) = {e^{ – 3t}}u\left( t \right)$$ Where u(t) is the unit step function. Which of these systems is time invariant, causal, and stable?

S1
S2
S3
S4

Detailed

SolutionThe impulse response functions of four linear systems S1, S2, S3, S4 are given respectively by $${h_1}\left( t \right) = 1,$$ $${h_2}\left( t \right) = u\left( t \right),$$ $${h_3}\left( t \right) = \frac{{u\left( t \right)}}{{t + 1}},$$ $${h_4}\left( t \right) = {e^{ – 3t}}u\left( t \right)$$ Where u(t) is the unit step function. Which of these systems is time invariant, causal, and stable?

13. A discrete-time all-pass system has two of its poles at 0.25<0° and 2<30°. Which one of the following statements about the system is TRUE?

It has two more poles at 0.5<30° and 4<0°
It is stable only when the impulse response is two-sided
It has constant phase response over all frequencies
It has constant phase response over the entire z-plane

Subscribe on YouTube

discrete-time all-pass system has two of its poles at 0.25" class="read-more button" href="https://exam.pscnotes.com/mcq/a-discrete-time-all-pass-system-has-two-of-its-poles-at-0-25/#more-57667">Detailed SolutionA discrete-time all-pass system has two of its poles at 0.25<0° and 2<30°. Which one of the following statements about the system is TRUE?

14. A stable linear time invariant (LTI) system has a transfer function $$H\left( s \right) = {1 \over {{s^2} + s – 6}}.$$ To make this system causal it needs to be cascaded with another LTI system having a transfer function H1(s). A correct choice for H1(s) among the following options is

s + 3
s - 2
s - 6
s + 1

Subscribe on YouTube

following options is" class="read-more button" href="https://exam.pscnotes.com/mcq/a-stable-linear-time-invariant-lti-system-has-a-transfer-function-hleft-s-right-1-over-s2-s-6-to-make-this-system-causal-it-needs-to-be-cascaded-with-another-lti-system-hav/#more-57354">Detailed SolutionA stable linear time invariant (LTI) system has a transfer function $$H\left( s \right) = {1 \over {{s^2} + s – 6}}.$$ To make this system causal it needs to be cascaded with another LTI system having a transfer function H1(s). A correct choice for H1(s) among the following options is

15. Assuming zero initial condition, the response y(t) of the system given below to a unit step input u(t) is \[\xrightarrow{{U\left( s \right)}}\boxed{\frac{1}{s}}\xrightarrow{{Y\left( s \right)}}\]

u(t)
tu(t)
$$rac{{{t^2}}}{2}uleft( t ight)$$
e-tu(t)

Subscribe on YouTube

below to a unit step input u(t) is \[\xrightarrow{{U\left( s \right)}}\boxed{\frac{1}{s}}\xrightarrow{{Y\left( s \right)}}\]" class="read-more button" href="https://exam.pscnotes.com/mcq/assuming-zero-initial-condition-the-response-yt-of-the-system-given-below-to-a-unit-step-input-ut-is-xrightarrowuleft-s-rightboxedfrac1sxrightarrowyleft-s-right/#more-57346">Detailed SolutionAssuming zero initial condition, the response y(t) of the system given below to a unit step input u(t) is \[\xrightarrow{{U\left( s \right)}}\boxed{\frac{1}{s}}\xrightarrow{{Y\left( s \right)}}\]

16. The function x(t) is shown in the figure. Even and odd parts of a unit-step function u(t) are respectively,

$$rac{1}{2},rac{1}{2}xleft( t ight)$$
$$ - rac{1}{2},rac{1}{2}xleft( t ight)$$
$$rac{1}{2}, - rac{1}{2}xleft( t ight)$$
$$ - rac{1}{2}, - rac{1}{2}xleft( t ight)$$

Join Our Telegram Channel

23.7 24.8 41.5 48.3 47.8C117.2 448 288 448 288 448s170.8 0 213.4-11.5c23.5-6.3 42-24.2 48.3-47.8 11.4-42.9 11.4-132.3 11.4-132.3s0-89.4-11.4-132.3zm-317.5 213.5V175.2l142.7 81.2-142.7 81.2z"/> Subscribe on YouTube a unit-step function u(t) are respectively," class="read-more button" href="https://exam.pscnotes.com/mcq/the-function-xt-is-shown-in-the-figure-even-and-odd-parts-of-a-unit-step-function-ut-are-respectively/#more-57173">Detailed SolutionThe function x(t) is shown in the figure. Even and odd parts of a unit-step function u(t) are respectively,

17. Laplace transforms of the functions tu(t) and u(t)sin(t) are respectively

$${1 over {{s^2}}},{s over {{s^2} + 1}}$$
$${1 over s},{1 over {{s^2} + 1}}$$
$${1 over {{s^2}}},{1 over {{s^2} + 1}}$$
$$s,{s over {{s^2} + 1}}$$

Subscribe on YouTube

class="read-more button" href="https://exam.pscnotes.com/mcq/laplace-transforms-of-the-functions-tut-and-utsint-are-respectively/#more-57047">Detailed SolutionLaplace transforms of the functions tu(t) and u(t)sin(t) are respectively

18. It is desired to find three-tap causal filter which gives zero signal as an output to and input of the form \[x\left[ n \right] = {c_1}\exp \left( { – \frac{{j\pi n}}{2}} \right) + {c_2}\exp \left( {\frac{{j\pi n}}{2}} \right),\] Where c1 and c2 are arbitrary real numbers. The desired three-tap filter is given by h[0] = 1, h[1] = a, h[2] = b and h[n] = 0 for n < 0 or n > 2. What are the values of the filter taps a and b if the output is y[n] = 0 for all n, when x[n] is as given above? \[\xrightarrow{{x\left[ n \right]}}\boxed{\begin{array}{*{20}{c}} {n = 0} \\ \downarrow \\ {h\left[ n \right] = \left\{ {1,a,b} \right\}} \end{array}}\xrightarrow{{y\left[ n \right] = 0}}\]

a = -1, b = 1
a = 0, b = 1
a = 1, b = 1
a = 0, b = -1

Join Our Telegram Channel

given by h[0] = 1, h[1] = a, h[2] = b and h[n] = 0 for n < 0 or n > 2. What are the values of the filter taps a and b if the output is y[n] = 0 for all n, when x[n] is as given above? \[\xrightarrow{{x\left[ n \right]}}\boxed{\begin{array}{*{20}{c}} {n = 0} \\ \downarrow
Subscribe on YouTube
\\ {h\left[ n \right] = \left\{ {1,a,b} \right\}} \end{array}}\xrightarrow{{y\left[ n \right] = 0}}\]" class="read-more button" href="https://exam.pscnotes.com/mcq/it-is-desired-to-find-three-tap-causal-filter-which-gives-zero-signal-as-an-output-to-and-input-of-the-form-xleft-n-right-c_1exp-left-fracjpi-n2-right-c_2exp/#more-56949">Detailed SolutionIt is desired to find three-tap causal filter which gives zero signal as an output to and input of the form \[x\left[ n \right] = {c_1}\exp \left( { – \frac{{j\pi n}}{2}} \right) + {c_2}\exp \left( {\frac{{j\pi n}}{2}} \right),\] Where c1 and c2 are arbitrary real numbers. The desired three-tap filter is given by h[0] = 1, h[1] = a, h[2] = b and h[n] = 0 for n < 0 or n > 2. What are the values of the filter taps a and b if the output is y[n] = 0 for all n, when x[n] is as given above? \[\xrightarrow{{x\left[ n \right]}}\boxed{\begin{array}{*{20}{c}} {n = 0} \\ \downarrow \\ {h\left[ n \right] = \left\{ {1,a,b} \right\}} \end{array}}\xrightarrow{{y\left[ n \right] = 0}}\]

19. Let x[n] = x[-n]. Let X(z) be the z-transform of x[n]. If 0.5 + j0.25 is a zero of X(z), which one of the following must also be a zero of X(z).

0.5 - j0.25
$${1 over {left( {0.5 + j0.25} ight)}}$$
$${1 over {left( {0.5 - j0.25} ight)}}$$
2 + j4

Subscribe on YouTube

of the following must also be a zero of X(z)." class="read-more button" href="https://exam.pscnotes.com/mcq/let-xn-x-n-let-xz-be-the-z-transform-of-xn-if-0-5-j0-25-is-a-zero-of-xz-which-one-of-the-following-must-also-be-a-zero-of-xz/#more-56945">Detailed SolutionLet x[n] = x[-n]. Let X(z) be the z-transform of x[n]. If 0.5 + j0.25 is a zero of X(z), which one of the following must also be a zero of X(z).

20. The bilateral Laplace transform of a function $$f\left( t \right) = \left\{ {\matrix{ {1,} & {{\rm{if}}\,a \le t \le b} \cr 0 & {{\rm{otherwise}}} \cr } } \right.$$ is

$${{a - b} over s}$$
$${{{e^z}left( {a - b} ight)} over s}$$
$${{{e^{ - as}} - {e^{ - bs}}} over s}$$
$${{{e^{ - left( {a - b} ight)}}} over s}$$

Detailed SolutionThe bilateral Laplace transform of a function $$f\left( t \right) = \left\{ {\matrix{ {1,} & {{\rm{if}}\,a \le t \le

89.4 11.4 132.3c6.3 23.7 24.8 41.5 48.3 47.8C117.2 448 288 448 288 448s170.8 0 213.4-11.5c23.5-6.3 42-24.2 48.3-47.8 11.4-42.9 11.4-132.3 11.4-132.3s0-89.4-11.4-132.3zm-317.5 213.5V175.2l142.7 81.2-142.7 81.2z"/> Subscribe on YouTube

b} \cr 0 & {{\rm{otherwise}}} \cr } } \right.$$ is

Test 1Test 2Test 3
Exit mobile version