21. A simply supported beam carries varying load from zero at one end and w at the other end. If the length of the beam is a, the maximum bending moment will be A. $$\frac{{{\text{wa}}}}{{27}}$$ B. $$\frac{{{\text{w}}{{\text{a}}^2}}}{{27}}$$ C. $$\frac{{{{\text{w}}^2}{\text{a}}}}{{\sqrt {27} }}$$ D. $$\frac{{{\text{w}}{{\text{a}}^2}}}{{9\sqrt 3 }}$$

$$ rac{{{ ext{wa}}}}{{27}}$$
$$ rac{{{ ext{w}}{{ ext{a}}^2}}}{{27}}$$
$$ rac{{{{ ext{w}}^2}{ ext{a}}}}{{sqrt {27} }}$$
$$ rac{{{ ext{w}}{{ ext{a}}^2}}}{{9sqrt 3 }}$$

Detailed SolutionA simply supported beam carries varying load from zero at one end and w at the other end. If the length of the beam is a, the maximum bending moment will be A. $$\frac{{{\text{wa}}}}{{27}}$$ B. $$\frac{{{\text{w}}{{\text{a}}^2}}}{{27}}$$ C. $$\frac{{{{\text{w}}^2}{\text{a}}}}{{\sqrt {27} }}$$ D. $$\frac{{{\text{w}}{{\text{a}}^2}}}{{9\sqrt 3 }}$$

22. The locus of the end point of the resultant of the normal and tangential components of the stress on an inclined plane, is A. Circle B. Parabola C. Ellipse D. Straight line

Circle
Parabola
Ellipse
Straight line

Detailed SolutionThe locus of the end point of the resultant of the normal and tangential components of the stress on an inclined plane, is A. Circle B. Parabola C. Ellipse D. Straight line

23. If Q is load factor, S is shape factor and F is factor of safety in elastic design, the following: A. Q = S + F B. Q = S – F C. Q = F – S D. Q = S × F

Q = S + F
Q = S - F
Q = F - S
Q = S × F

Detailed SolutionIf Q is load factor, S is shape factor and F is factor of safety in elastic design, the following: A. Q = S + F B. Q = S – F C. Q = F – S D. Q = S × F

24. Pick up the correct statement from the following: A. For a uniformly distributed load, the shear force varies linearly B. For a uniformly distributed load, B.M. curve is a parabola C. For a load varying linearly, the shear force curve is a parabola D. All the above

For a uniformly distributed load, the shear force varies linearly
For a uniformly distributed load, B.M. curve is a parabola
For a load varying linearly, the shear force curve is a parabola
All the above

Detailed SolutionPick up the correct statement from the following: A. For a uniformly distributed load, the shear force varies linearly B. For a uniformly distributed load, B.M. curve is a parabola C. For a load varying linearly, the shear force curve is a parabola D. All the above

25. The vertical reaction for the arch is A. $$\frac{{{\text{Wa}}}}{{2l}}$$ B. $$\frac{{{\text{W}}l}}{{\text{a}}}$$ C. $$\frac{{{\text{Wa}}}}{l}$$ D. $$\frac{{{\text{W}}{{\text{a}}^2}}}{{2l}}$$

$$ rac{{{ ext{Wa}}}}{{2l}}$$
$$ rac{{{ ext{W}}l}}{{ ext{a}}}$$
$$ rac{{{ ext{Wa}}}}{l}$$
$$ rac{{{ ext{W}}{{ ext{a}}^2}}}{{2l}}$$

Detailed SolutionThe vertical reaction for the arch is A. $$\frac{{{\text{Wa}}}}{{2l}}$$ B. $$\frac{{{\text{W}}l}}{{\text{a}}}$$ C. $$\frac{{{\text{Wa}}}}{l}$$ D. $$\frac{{{\text{W}}{{\text{a}}^2}}}{{2l}}$$

26. For the close coil helical spring of the maximum deflection is A. $$\frac{{{\text{W}}{{\text{D}}^3}{\text{n}}}}{{{{\text{d}}^4}{\text{N}}}}$$ B. $$\frac{{2{\text{W}}{{\text{D}}^3}{\text{n}}}}{{{{\text{d}}^4}{\text{N}}}}$$ C. $$\frac{{4{{\text{W}}^2}{{\text{D}}^3}{\text{n}}}}{{{{\text{d}}^4}{\text{n}}}}$$ D. $$\frac{{8{\text{W}}{{\text{D}}^3}{\text{n}}}}{{{{\text{d}}^4}{\text{n}}}}$$

$$ rac{{{ ext{W}}{{ ext{D}}^3}{ ext{n}}}}{{{{ ext{d}}^4}{ ext{N}}}}$$
$$ rac{{2{ ext{W}}{{ ext{D}}^3}{ ext{n}}}}{{{{ ext{d}}^4}{ ext{N}}}}$$
$$ rac{{4{{ ext{W}}^2}{{ ext{D}}^3}{ ext{n}}}}{{{{ ext{d}}^4}{ ext{n}}}}$$
$$ rac{{8{ ext{W}}{{ ext{D}}^3}{ ext{n}}}}{{{{ ext{d}}^4}{ ext{n}}}}$$

Detailed SolutionFor the close coil helical spring of the maximum deflection is A. $$\frac{{{\text{W}}{{\text{D}}^3}{\text{n}}}}{{{{\text{d}}^4}{\text{N}}}}$$ B. $$\frac{{2{\text{W}}{{\text{D}}^3}{\text{n}}}}{{{{\text{d}}^4}{\text{N}}}}$$ C. $$\frac{{4{{\text{W}}^2}{{\text{D}}^3}{\text{n}}}}{{{{\text{d}}^4}{\text{n}}}}$$ D. $$\frac{{8{\text{W}}{{\text{D}}^3}{\text{n}}}}{{{{\text{d}}^4}{\text{n}}}}$$

27. Stress may be defined as A. Force per unit length B. Force per unit volume C. Force per unit area D. None of these

Force per unit length
Force per unit volume
Force per unit area
None of these

Detailed SolutionStress may be defined as A. Force per unit length B. Force per unit volume C. Force per unit area D. None of these

28. The ratio of the stresses produced by a suddenly applied load and by a gradually applied load on a bar, is A. $$\frac{1}{4}$$ B. $$\frac{1}{2}$$ C. 1 D. 2

$$ rac{1}{4}$$
$$ rac{1}{2}$$
1
2

Detailed SolutionThe ratio of the stresses produced by a suddenly applied load and by a gradually applied load on a bar, is A. $$\frac{1}{4}$$ B. $$\frac{1}{2}$$ C. 1 D. 2

29. The ratio of circumferential stress to the longitudinal stress in the walls of a cylindrical shell, due to flowing liquid, is A. $$\frac{1}{2}$$ B. 1 C. $$1\frac{1}{2}$$ D. 2

$$ rac{1}{2}$$
1
$$1 rac{1}{2}$$
2

Detailed SolutionThe ratio of circumferential stress to the longitudinal stress in the walls of a cylindrical shell, due to flowing liquid, is A. $$\frac{1}{2}$$ B. 1 C. $$1\frac{1}{2}$$ D. 2

30. Inertia of a rectangular section of width and depth about an axis passing the moment of through C.G. and parallel to its width is A. $$\frac{{{\text{B}}{{\text{D}}^2}}}{6}$$ B. $$\frac{{{\text{B}}{{\text{D}}^3}}}{6}$$ C. $$\frac{{{\text{B}}{{\text{D}}^3}}}{{12}}$$ D. $$\frac{{{{\text{B}}^2}{\text{D}}}}{6}$$

$$ rac{{{ ext{B}}{{ ext{D}}^2}}}{6}$$
$$ rac{{{ ext{B}}{{ ext{D}}^3}}}{6}$$
$$ rac{{{ ext{B}}{{ ext{D}}^3}}}{{12}}$$
$$ rac{{{{ ext{B}}^2}{ ext{D}}}}{6}$$

Detailed SolutionInertia of a rectangular section of width and depth about an axis passing the moment of through C.G. and parallel to its width is A. $$\frac{{{\text{B}}{{\text{D}}^2}}}{6}$$ B. $$\frac{{{\text{B}}{{\text{D}}^3}}}{6}$$ C. $$\frac{{{\text{B}}{{\text{D}}^3}}}{{12}}$$ D. $$\frac{{{{\text{B}}^2}{\text{D}}}}{6}$$