Which one of the following is an eigen vector of the matrix \[\left[ {\begin{array}{*{20}{c}} 5&0&0&0 \\ 0&5&5&0 \\ 0&0&2&1 \\ 0&0&3&1 \end{array}} \right]?\] A. \[\left[ {\begin{array}{*{20}{c}} 1 \\ { – 2} \\ 0 \\ 0 \end{array}} \right]\] B. \[\left[ {\begin{array}{*{20}{c}} 0 \\ 0 \\ 1 \\ 0 \end{array}} \right]\] C. \[\left[ {\begin{array}{*{20}{c}} 1 \\ 0 \\ 0 \\ { – 2} \end{array}} \right]\] D. \[\left[ {\begin{array}{*{20}{c}} 1 \\ { – 1} \\ 2 \\ 1 \end{array}} \right]\]

”[left[
\]” option2=”\[\left[ {\begin{array}{*{20}{c}} 0 \\ 0 \\ 1 \\ 0 \end{array}} \right]\]” option3=”\[\left[ {\begin{array}{*{20}{c}} 1 \\ 0 \\ 0 \\ { – 2} \end{array}} \right]\]” option4=”\[\left[ {\begin{array}{*{20}{c}} 1 \\ { – 1} \\ 2 \\ 1 \end{array}} \right]\]” correct=”option1″]

The correct answer is $\boxed{\left[ {\begin{array}{*{20}{c}} 1 \ { – 2} \ 0 \ 0 \end{array}} \right]}$.

An eigenvector of a matrix $A$ is a nonzero vector $v$ such that there exists a scalar $\lambda$, called the eigenvalue, such that $Av=\lambda v$.

To find the eigenvectors of a matrix, we can use the following steps:

  1. Find the characteristic polynomial of the matrix, which is the determinant of the matrix $A-\lambda I$.
  2. Solve the characteristic polynomial for $\lambda$.
  3. For each $\lambda$ that is a root of the characteristic polynomial, find a vector $v$ such that $Av=\lambda v$.

In this case, the characteristic polynomial of the matrix $A$ is

$$p(\lambda)=\det\left[ {\begin{array}{*{20}{c}} 5-\lambda & 0 & 0 & 0 \ 0 & 5-\lambda & 5 & 0 \ 0 & 0 & 2-\lambda & 1 \ 0 & 0 & 3 & 1-\lambda \end{array}} \right]$$

Expanding the determinant, we get

$$p(\lambda)=(5-\lambda)^4-20(5-\lambda)^3+100(5-\lambda)^2-200(5-\lambda)+250$$

Solving for $\lambda$, we find that the eigenvalues of the matrix $A$ are $\lambda=5,2,1,1$.

To find an eigenvector corresponding to the eigenvalue $\lambda=5$, we can use the following vector:

$$v=\left[ {\begin{array}{*{20}{c}} 1 \ { – 2} \ 0 \ 0 \end{array}} \right]$$

We can verify that $Av=\lambda v$ by substituting $v$ into the equation $Av=\lambda v$. We get

$$A\left[ {\begin{array}{{20}{c}} 1 \ { – 2} \ 0 \ 0 \end{array}} \right]=\left[ {\begin{array}{{20}{c}} 5 & 0 & 0 & 0 \ 0 & 5 & 5 & 0 \ 0 & 0 & 2 & 1 \ 0 & 0 & 3 & 1 \end{array}} \right]\left[ {\begin{array}{{20}{c}} 1 \ { – 2} \ 0 \ 0 \end{array}} \right]=\left[ {\begin{array}{{20}{c}} 5 \ { – 10} \ 0 \ 0 \end{array}} \right]=\lambda\left[ {\begin{array}{{20}{c}} 1 \ { – 2} \ 0 \ 0 \end{array}} \right]=\left[ {\begin{array}{{20}{c}} 5 \ { – 10} \ 0 \ 0 \end{array}} \right]$$

Therefore, the vector $\left[ {\begin{array}{*{20}{c}} 1 \ { – 2} \ 0 \ 0 \end{array}} \right]$ is an eigenvector of the matrix $A$ corresponding to the eigenvalue $\lambda=5$.