Which one of the following equations is a correct identity for arbitrary 3 × 3 real matrices P, Q and R? A. P(Q + R) = PQ + RP B. (P – Q)2 = P2 – 2PQ + Q2 C. det (P + Q) = det P + det Q D. (P + Q)2 = P2 + PQ + QP + Q2

P(Q + R) = PQ + RP
(P - Q)2 = P2 - 2PQ + Q2
det (P + Q) = det P + det Q
(P + Q)2 = P2 + PQ + QP + Q2

The correct answer is $\boxed{\text{(D)}}$.

(A) is not correct because the order of multiplication of matrices does not matter. In other words, $P(Q + R) \neq PQ + PR$.

(B) is not correct because the square of a matrix is not equal to the sum of the matrix and its negative. In other words, $(P – Q)^2 \neq P^2 – 2PQ + Q^2$.

(C) is not correct because the determinant of a matrix is not equal to the sum of the determinants of its diagonal elements. In other words, $\det (P + Q) \neq \det P + \det Q$.

(D) is correct because the square of a matrix is equal to the sum of the product of the matrix and itself, its transpose, and its negative transpose. In other words, $(P + Q)^2 = P^2 + 2PQ + QP + Q^2$.

Here is a more detailed explanation of each option:

(A) $P(Q + R) = PQ + RP$

This is not always true. For example, if $P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $Q = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$, and $R = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$, then $P(Q + R) = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$, but $PQ + PR = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$.

(B) $(P – Q)^2 = P^2 – 2PQ + Q^2$

This is not always true. For example, if $P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $Q = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$, then $(P – Q)^2 = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, but $P^2 – 2PQ + Q^2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

(C) $\det (P + Q) = \det P + \det Q$

This is not always true. For example, if $P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$ and $Q = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$, then $\det (P + Q) = -1$, but $\det P + \det Q = 2$.

(D) $(P + Q)^2 = P^2 + 2PQ + QP + Q^2$

This is always true. To prove this, we can use the following identity:

$$(A + B)^2 = A^2 + 2AB + B^2$$

where $A$ and $B$ are any matrices. Substituting $P$ for $A$ and $Q$ for $B$, we get:

$$(P + Q)^2 = P^2 + 2PQ + Q^2$$