The value of the integral \[\int\limits_0^2 {\int\limits_0^{\text{x}} {{{\text{e}}^{{\text{x}} + {\text{y}}}}} } {\text{dy dx}}\] A. \[\frac{1}{2}\left( {{\text{e}} – 1} \right)\] B. \[\frac{1}{2}{\left( {{{\text{e}}^2} – 1} \right)^2}\] C. \[\frac{1}{2}\left( {{{\text{e}}^2} – {\text{e}}} \right)\] D. \[\frac{1}{2}{\left( {{\text{e}} – \frac{1}{{\text{e}}}} \right)^2}\]

”[rac{1}{2}left(
” option2=”\[\frac{1}{2}{\left( {{{\text{e}}^2} – 1} \right)^2}\]” option3=”\[\frac{1}{2}\left( {{{\text{e}}^2} – {\text{e}}} \right)\]” option4=”\[\frac{1}{2}{\left( {{\text{e}} – \frac{1}{{\text{e}}}} \right)^2}\]” correct=”option1″]

The correct answer is $\boxed{\frac{1}{2}{\left( {{{\text{e}}^2} – 1} \right)^2}}$.

To evaluate the integral, we can substitute in the limits of integration. We get:

$$\int_0^2 {\int_0^{\text{x}} {{{\text{e}}^{{\text{x}} + {\text{y}}}}} } {\text{dy dx}} = \int_0^2 {\text{e}^{\text{x}} \int_0^{\text{x}} {{{\text{e}}^{\text{y}}}}} } {\text{dy dx}} = \int_0^2 {\text{e}^{\text{x}} \left[ {{\text{e}}^{\text{y}}} \right]_0^{\text{x}} } {\text{dx}} = \int_0^2 {\text{e}^{2\text{x}}} {\text{dx}}$$

We can then evaluate the integral using the following formula:

$$\int {\text{e}^{kx}} {\text{dx}} = \frac{\text{e}^{kx}}{k} + C$$

where $C$ is an arbitrary constant.

We get:

$$\int_0^2 {\text{e}^{2\text{x}}} {\text{dx}} = \frac{\text{e}^{2\text{x}}}{2} \bigg|_0^2 = \frac{\text{e}^{4} – \text{e}^0}{2} = \frac{1}{2}{\left( {{{\text{e}}^2} – 1} \right)^2}$$

Exit mobile version