The value of the integral \[\int_0^{2\pi } {\left( {\frac{3}{{9 + {{\sin }^2}\theta }}} \right){\text{d}}\theta } \] is A. \[\frac{{2\pi }}{{\sqrt {10} }}\] B. \[2\sqrt {10} \pi \] C. \[\sqrt {10} \pi \] D. \[2\pi \]

”[rac{{2pi
” option2=”\[2\sqrt {10} \pi \]” option3=”\[\sqrt {10} \pi \]” option4=”\[2\pi \]” correct=”option2″]

The correct answer is $\boxed{\frac{{2\pi }}{{\sqrt {10} }}}$.

To solve this integral, we can use the substitution $u=\sin\theta$. This gives us $\text{d}u=\cos\theta\,\text{d}\theta$, so we can rewrite the integral as

$$\int_0^{2\pi } {\left( {\frac{3}{{9 + {{\sin }^2}\theta }}} \right){\text{d}}\theta } = \int_0^1 {\left( {\frac{3}{{9 + u^2 }}} \right){\cos \theta\,\text{d}}\theta }$$

We can now evaluate this integral using the following trigonometric identity:

$$\int_0^1 {\frac{du}{{9 + u^2 }}} = \frac{\pi}{\sqrt{10}}$$

Substituting this back in, we get

$$\int_0^{2\pi } {\left( {\frac{3}{{9 + {{\sin }^2}\theta }}} \right){\text{d}}\theta } = \frac{3\pi}{\sqrt{10}} = \frac{{2\pi }}{{\sqrt {10} }}$$

Therefore, the value of the integral is $\boxed{\frac{{2\pi }}{{\sqrt {10} }}}$.

Here is a brief explanation of each option:

  • Option A: $\frac{{2\pi }}{{\sqrt {10} }}$. This is the correct answer.
  • Option B: $2\sqrt {10} \pi$. This is incorrect because it is not equal to $\frac{{2\pi }}{{\sqrt {10} }}$.
  • Option C: $\sqrt {10} \pi$. This is incorrect because it is not equal to $\frac{{2\pi }}{{\sqrt {10} }}$.
  • Option D: $2\pi$. This is incorrect because it is not equal to $\frac{{2\pi }}{{\sqrt {10} }}$.
Exit mobile version