The value of the triple integral $\int_0^3 \int_0^x (6-x-y) \, dydx$ is $40.5$.
To evaluate this integral, we can first integrate with respect to $y$. This gives us
$$\int_0^3 \int_0^x (6-x-y) \, dydx = \int_0^3 \left[ 6y – xy – \frac{y^2}{2} \right]_0^x dx = \int_0^3 6x – x^2 – \frac{x^2}{2} dx$$
We can then integrate with respect to $x$. This gives us
$$\int_0^3 6x – x^2 – \frac{x^2}{2} dx = \left[ 3x^2 – \frac{x^3}{3} – \frac{x^3}{6} \right]_0^3 = 3 \cdot 9 – \frac{3 \cdot 9^2}{3} – \frac{3 \cdot 9^3}{6} = 40.5$$
Therefore, the value of the triple integral is $40.5$.
Here is a step-by-step solution to the integral:
- Integrate with respect to $y$:
$$\int_0^3 \int_0^x (6-x-y) \, dydx = \int_0^3 \left[ 6y – xy – \frac{y^2}{2} \right]_0^x dx = \int_0^3 6x – x^2 – \frac{x^2}{2} dx$$
- Integrate with respect to $x$:
$$\int_0^3 6x – x^2 – \frac{x^2}{2} dx = \left[ 3x^2 – \frac{x^3}{3} – \frac{x^3}{6} \right]_0^3 = 3 \cdot 9 – \frac{3 \cdot 9^2}{3} – \frac{3 \cdot 9^3}{6} = 40.5$$
- The answer is $40.5$.