The Fourier transform of a signal h(t) is $$H\left( {j\omega } \right) = {{\left( {2\cos \omega } \right)\left( {\sin \omega } \right)} \over \omega }$$ The value of h(0) is

$${1 over 4}$$
$${1 over 2}$$
1
2

The correct answer is $\boxed{{1 \over 2}}$.

The Fourier transform of a signal $h(t)$ is defined as

$$H\left( {j\omega } \right) = \int_{-\infty}^{\infty} h(t) e^{-j\omega t} dt$$

The inverse Fourier transform is defined as

$$h(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} H\left( {j\omega } \right) e^{j\omega t} d\omega$$

In this case, we are given that

$$H\left( {j\omega } \right) = {{\left( {2\cos \omega } \right)\left( {\sin \omega } \right)} \over \omega }$$

The inverse Fourier transform of this function can be found using the following formula:

$$h(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} {{\left( {2\cos \omega } \right)\left( {\sin \omega } \right)} \over \omega } e^{j\omega t} d\omega$$

We can evaluate this integral using the following steps:

  1. We can use the substitution $u = \omega t$ to write the integral as

$$h(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} {{\left( {2\cos u } \right)\left( {\sin u } \right)} \over u } e^{-u} du$$

  1. We can then use the following formula to evaluate the integral:

$$\int_{-\infty}^{\infty} {{\left( {2\cos u } \right)\left( {\sin u } \right)} \over u } e^{-u} du = \pi$$

  1. Therefore, we have

$$h(t) = \frac{1}{2\pi} \pi = \frac{1}{2}$$

Therefore, the value of $h(0)$ is $\boxed{{1 \over 2}}$.

Exit mobile version