The area between the parabolas y2 = 4ax and x2 = 4ay is A. $$\frac{2}{3}{{\text{a}}^2}$$ B. $$\frac{{14}}{3}{{\text{a}}^2}$$ C. $$\frac{{16}}{3}{{\text{a}}^2}$$ D. $$\frac{{17}}{3}{{\text{a}}^2}$$

$$ rac{2}{3}{{ ext{a}}^2}$$
$$ rac{{14}}{3}{{ ext{a}}^2}$$
$$ rac{{16}}{3}{{ ext{a}}^2}$$
$$ rac{{17}}{3}{{ ext{a}}^2}$$

The correct answer is $\boxed{\frac{16}{3}a^2}$.

The parabolas $y^2 = 4ax$ and $x^2 = 4ay$ intersect at the points $(\pm a, \pm a)$. The area between the parabolas is bounded by the lines $y = x$ and $y = -x$.

To find the area, we can use the following formula:

$$\text{Area} = \int_{-a}^a \left( x – y \right) \, dy$$

Substituting in the equations for the parabolas, we get:

$$\text{Area} = \int_{-a}^a \left( x – \sqrt{4ax} \right) \, dy$$

We can simplify this integral by using the substitution $u = \sqrt{4ax}$. This gives us:

$$\text{Area} = \int_{-2a}^2 \left( x – u \right) \, du$$

We can then evaluate this integral using the following formula:

$$\int u^n \, du = \frac{u^{n+1}}{n+1} + C$$

This gives us:

$$\text{Area} = \left[ \frac{x^2}{2} – \frac{u^2}{2} \right]_{-2a}^2 = \frac{4a^2}{2} – \frac{4a^2}{2} + \frac{4a^2}{2} – \frac{4a^2}{2} = \boxed{\frac{16}{3}a^2}$$