What is the value of the following sum ?
1×2 + 2×2² + 3×2³ + 4×2⁴ + …… + 10×2¹⁰
$S = 1\cdot2^1 + 2\cdot2^2 + 3\cdot2^3 + \dots + 10\cdot2^{10}$
Multiply S by the common ratio, $r=2$:
$2S = 1\cdot2^2 + 2\cdot2^3 + 3\cdot2^4 + \dots + 9\cdot2^{10} + 10\cdot2^{11}$
Subtract the first equation from the second:
$2S – S = (1\cdot2^2 + 2\cdot2^3 + \dots + 10\cdot2^{11}) – (1\cdot2^1 + 2\cdot2^2 + \dots + 10\cdot2^{10})$
$S = -1\cdot2^1 + (2-1)2^2 + (3-2)2^3 + \dots + (10-9)2^{10} + 10\cdot2^{11}$
$S = -2 + 1\cdot2^2 + 1\cdot2^3 + \dots + 1\cdot2^{10} + 10\cdot2^{11}$
$S = (2^2 + 2^3 + \dots + 2^{10}) – 2 + 10\cdot2^{11}$
The terms in the parenthesis form a geometric series with first term $a = 2^2 = 4$, common ratio $r=2$, and number of terms $n = 10-2+1 = 9$.
The sum of this geometric series is $G = a \frac{r^n – 1}{r-1} = 4 \frac{2^9 – 1}{2-1} = 4 (2^9 – 1) = 2^2 (2^9 – 1) = 2^{11} – 4$.
Substitute this back into the expression for S:
$S = (2^{11} – 4) – 2 + 10\cdot2^{11}$
$S = 2^{11} – 6 + 10\cdot2^{11}$
$S = (1 + 10)2^{11} – 6$
$S = 11\cdot2^{11} – 6$.
Hold on, let’s re-calculate the subtraction step correctly.
$S = 1\cdot2^1 + 2\cdot2^2 + 3\cdot2^3 + \dots + 10\cdot2^{10}$
$2S = \quad \quad 1\cdot2^2 + 2\cdot2^3 + \dots + 9\cdot2^{10} + 10\cdot2^{11}$
$2S – S = (1\cdot2^2 – 2\cdot2^2) + (2\cdot2^3 – 3\cdot2^3) + \dots + (9\cdot2^{10} – 10\cdot2^{10}) + 10\cdot2^{11} – 1\cdot2^1$
This is incorrect. The terms should align:
$S = \quad 1\cdot2^1 + 2\cdot2^2 + 3\cdot2^3 + \dots + 10\cdot2^{10}$
$2S = \quad \quad \quad 1\cdot2^2 + 2\cdot2^3 + \dots + 9\cdot2^{10} + 10\cdot2^{11}$
Subtracting S from 2S:
$S = (10\cdot2^{11}) – (1\cdot2^1) – [(2-1)2^2 + (3-2)2^3 + \dots + (10-9)2^{10}]$
$S = 10\cdot2^{11} – 2 – [2^2 + 2^3 + \dots + 2^{10}]$
The geometric series is $2^2 + 2^3 + \dots + 2^{10}$. First term $a=2^2=4$, ratio $r=2$, number of terms $n=9$.
Sum $G = 4 \frac{2^9 – 1}{2-1} = 4(512 – 1) = 4 \times 511 = 2044$.
Let’s re-calculate $G$ using the formula $a(r^n-1)/(r-1)$ where $a=2$, $n=10$ for $2^1 + … + 2^{10}$, then subtract the first term $2^1$.
$G’ = 2^1 + 2^2 + \dots + 2^{10} = 2 \frac{2^{10} – 1}{2-1} = 2(1024 – 1) = 2 \times 1023 = 2046$.
The sum $2^2 + 2^3 + \dots + 2^{10} = G’ – 2^1 = 2046 – 2 = 2044$.
$S = 10\cdot2^{11} – 2 – 2044 = 10\cdot2^{11} – 2046$.
$10 \cdot 2^{11} = 10 \cdot 2048 = 20480$.
$S = 20480 – 2046 = 18434$.
Now check the options:
A) $9\times2^{11} + 2 = 9 \times 2048 + 2 = 18432 + 2 = 18434$. Matches.
B) $10\times2^{11} + 2 = 10 \times 2048 + 2 = 20480 + 2 = 20482$.
C) $10\times2^{11} – 2 = 10 \times 2048 – 2 = 20480 – 2 = 20478$.
D) $9\times2^{11} – 2 = 9 \times 2048 – 2 = 18432 – 2 = 18430$.
My original calculation of the geometric series part in the subtraction was correct:
$S = 10 \cdot 2^{11} – (2^1 + 2^2 + \dots + 2^{10})$
The geometric series $2^1 + 2^2 + \dots + 2^{10}$ has $a=2, r=2, n=10$.
Sum is $2 \frac{2^{10}-1}{2-1} = 2(1024-1) = 2(1023) = 2046$.
$S = 10 \cdot 2^{11} – 2046$.
$S = 10 \cdot 2048 – 2046 = 20480 – 2046 = 18434$.
This matches $9 \cdot 2^{11} + 2$.
Let’s re-do the AGP subtraction step structure:
$S = 1\cdot2 + 2\cdot2^2 + 3\cdot2^3 + \dots + 10\cdot2^{10}$
$2S = \quad \quad 1\cdot2^2 + 2\cdot2^3 + \dots + 9\cdot2^{10} + 10\cdot2^{11}$
Subtracting the first from the second, aligning terms vertically:
$S = (2\cdot2^2 – 1\cdot2^2) + (3\cdot2^3 – 2\cdot2^3) + \dots + (10\cdot2^{10} – 9\cdot2^{10}) + 10\cdot2^{11} – 1\cdot2^1$ — This is wrong alignment
Correct alignment for subtraction:
$2S = \quad \quad 1\cdot2^2 + 2\cdot2^3 + \dots + 9\cdot2^{10} + 10\cdot2^{11}$
$S = 1\cdot2^1 + 2\cdot2^2 + 3\cdot2^3 + \dots + 10\cdot2^{10}$
$2S – S = (10\cdot2^{11}) + (9\cdot2^{10} – 10\cdot2^{10}) + \dots + (2\cdot2^2 – 3\cdot2^2) + (1\cdot2^1 – 2\cdot2^1)$ — Also wrong alignment.
Correct method:
$S = 1\cdot2^1 + 2\cdot2^2 + 3\cdot2^3 + \dots + 10\cdot2^{10}$
$2S = \quad \quad 1\cdot2^2 + 2\cdot2^3 + \dots + 9\cdot2^{10} + 10\cdot2^{11}$
$2S – S = (10\cdot2^{11}) – (1\cdot2^1) + (1\cdot2^2 – 2\cdot2^2) + (2\cdot2^3 – 3\cdot2^3) + \dots + (9\cdot2^{10} – 10\cdot2^{10})$ This is also not right.
The general formula for $\sum_{k=1}^n k r^k$ is $\frac{nr^{n+2} – (n+1)r^{n+1} + r}{(r-1)^2}$.
Here $n=10$, $r=2$.
$S = \frac{10 \cdot 2^{12} – (10+1)2^{11} + 2}{(2-1)^2} = \frac{10 \cdot 2^{12} – 11 \cdot 2^{11} + 2}{1^2}$
$S = 10 \cdot 2 \cdot 2^{11} – 11 \cdot 2^{11} + 2$
$S = 20 \cdot 2^{11} – 11 \cdot 2^{11} + 2$
$S = (20 – 11) \cdot 2^{11} + 2$
$S = 9 \cdot 2^{11} + 2$.
This matches option A and confirms the previous calculation result.
The error in manual subtraction breakdown was in the terms. It should be:
$S = 1\cdot2 + 2\cdot2^2 + 3\cdot2^3 + \dots + 10\cdot2^{10}$
$2S = \quad \quad 1\cdot2^2 + 2\cdot2^3 + \dots + 9\cdot2^{10} + 10\cdot2^{11}$
$2S – S = (10\cdot2^{11}) + (2\cdot2^2 – 1\cdot2^2) + (3\cdot2^3 – 2\cdot2^3) + \dots + (10\cdot2^{10} – 9\cdot2^{10}) – 1\cdot2^1$
This is still not quite right. The terms are offset.
$S = 1\cdot2^1 + 2\cdot2^2 + 3\cdot2^3 + \dots + (n-1)r^{n-1} + n r^n$
$rS = \quad \quad 1\cdot r^2 + 2\cdot r^3 + \dots + (n-1)r^n + n r^{n+1}$
$rS – S = n r^{n+1} – 1\cdot r^1 – [(2-1)r^2 + (3-2)r^3 + \dots + (n-(n-1))r^n]$
$(r-1)S = n r^{n+1} – r – [r^2 + r^3 + \dots + r^n]$
The geometric series in the bracket is $r^2 + \dots + r^n$. First term $r^2$, ratio $r$, number of terms $n-1$.
Sum is $r^2 \frac{r^{n-1}-1}{r-1}$.
$(r-1)S = n r^{n+1} – r – r^2 \frac{r^{n-1}-1}{r-1}$. For $r=2$:
$S = n 2^{n+1} – 2 – 4 \frac{2^{n-1}-1}{1} = n 2^{n+1} – 2 – 4(2^{n-1}-1) = n 2^{n+1} – 2 – 2^2 2^{n-1} + 4 = n 2^{n+1} – 2^{n+1} + 2$.
$S = (n-1)2^{n+1} + 2$.
With $n=10$:
$S = (10-1)2^{10+1} + 2 = 9\cdot2^{11} + 2$.
This confirms the formula derived from the difference method.