One of the eigen vectors of the matrix \[{\text{A}} = \left[ {\begin{array}{*{20}{c}} 2&2 \\ 1&3 \end{array}} \right]\] is A. \[\left\{ {\begin{array}{*{20}{c}} 2 \\ { – 1} \end{array}} \right\}\] B. \[\left\{ {\begin{array}{*{20}{c}} 2 \\ 1 \end{array}} \right\}\] C. \[\left\{ {\begin{array}{*{20}{c}} 4 \\ 1 \end{array}} \right\}\] D. \[\left\{ {\begin{array}{*{20}{c}} 1 \\ { – 1} \end{array}} \right\}\]

”[left{
” option2=”\[\left\{ {\begin{array}{*{20}{c}} 2 \\ 1 \end{array}} \right\}\]” option3=”\[\left\{ {\begin{array}{*{20}{c}} 4 \\ 1 \end{array}} \right\}\]” option4=”\[\left\{ {\begin{array}{*{20}{c}} 1 \\ { – 1} \end{array}} \right\}\]” correct=”option3″]

The correct answer is $\boxed{\left\{ {\begin{array}{*{20}{c}} 2 \ { – 1} \end{array}} \right\}}$.

To find the eigenvalues and eigenvectors of a matrix, we can use the following formula:

$$\lambda v = A v$$

where $\lambda$ is the eigenvalue, $v$ is the eigenvector, and $A$ is the matrix.

In this case, we have:

$$\begin{align}
\lambda v &= A v \
\lambda \left( \begin{array}{c} 2 \ -1 \end{array} \right) &= \left( \begin{array}{cc} 2 & 2 \ 1 & 3 \end{array} \right) \left( \begin{array}{c} 2 \ -1 \end{array} \right) \
\lambda \left( \begin{array}{c} 2 \ -1 \end{array} \right) &= \left( \begin{array}{c} 4 \ 3 \end{array} \right) \
\lambda &= 4 \
\end{align
}$$

Therefore, one of the eigenvalues of the matrix is $\lambda = 4$.

To find the corresponding eigenvector, we can solve the following equation:

$$\begin{align}
Av &= \lambda v \
\left( \begin{array}{cc} 2 & 2 \ 1 & 3 \end{array} \right) \left( \begin{array}{c} x \ y \end{array} \right) &= \left( \begin{array}{c} 4 \ 3 \end{array} \right) \
2x + 2y &= 4 \
x + 3y &= 3 \
\end{align
}$$

Solving this system of equations, we get:

$$x = 2, \quad y = -1$$

Therefore, one of the eigenvectors of the matrix is $\boxed{\left\{ {\begin{array}{*{20}{c}} 2 \ { – 1} \end{array}} \right\}}$.

The other eigenvalue and eigenvector of the matrix can be found similarly.