Let x(t) and y(t) (with Fourier transforms X(f) and Y(f) respectively) be related as shown in the figure. Then Y(f) is

$$ - rac{1}{2}Xleft( {rac{f}{2}} ight){e^{ - j2pi f}}$$
$$ - rac{1}{2}Xleft( {rac{f}{2}} ight){e^{j2pi f}}$$
$$ - Xleft( {rac{f}{2}} ight){e^{j2pi f}}$$
$$ - Xleft( {rac{f}{2}} ight){e^{ - j2pi f}}$$

The correct answer is $\boxed{-\frac{1}{2}X\left(\frac{f}{2}\right)e^{-j2\pi f}}$.

The Fourier transform of a function $x(t)$ is defined as

$$X(f) = \int_{-\infty}^{\infty} x(t) e^{-j2\pi ft} dt$$

The inverse Fourier transform is defined as

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(f) e^{j2\pi ft} df$$

Given that $x(t)$ is an even function, its Fourier transform is given by

$$X(f) = \frac{1}{2} \int_{-\infty}^{\infty} x(t) e^{-j2\pi ft} dt = \frac{1}{2} \int_{-\infty}^{\infty} x(-t) e^{j2\pi ft} dt = \frac{1}{2} X(-f)$$

The Fourier transform of $y(t)$ is given by

$$Y(f) = \int_{-\infty}^{\infty} y(t) e^{-j2\pi ft} dt = \int_{-\infty}^{\infty} -x(t-\tau) e^{-j2\pi ft} dt = -X(f) e^{-j2\pi \tau f}$$

where $\tau$ is the delay parameter.

In this case, $\tau = \frac{1}{2}$, so

$$Y(f) = -X(f) e^{-j2\pi \frac{1}{2} f} = -\frac{1}{2}X\left(\frac{f}{2}\right)e^{-j2\pi f}$$

Exit mobile version