The correct answer is $\boxed{\text{D}}$.
The integral of $e^{-x} – e^{-x}$ is $e^{-x}$. This is because the derivative of $e^{-x}$ is $-e^{-x}$, so integrating $-e^{-x}$ gives $e^{-x}$ plus an arbitrary constant. Since we are integrating over the entire real line, the constant of integration must be zero.
Here is a more detailed explanation:
The integral of a function $f(x)$ is the area under the curve $y=f(x)$ between the $x$-axis and the line $x=a$, where $a$ is the upper limit of integration. In this case, $f(x)=e^{-x}-e^{-x}$ and $a=\infty$.
The area under the curve $y=e^{-x}-e^{-x}$ is shown in the following graph:
[asy]
unitsize(1 cm);
draw((0,0)–(10,0));
draw((0,0)–(0,1));
real ticklen=1;
real tickspace=1;
real axisarrowsize=0.14inch;
real tickdown=-0.12inch;
real tickdownlength=-0.12inch;
real wholetickdown=-0.24inch;
real wholetickdownlength=-0.24inch;
real tickdownlengthshort=-0.06inch;
real wholetickdownlengthshort=-0.12inch;
real tickdownbase=0.12inch;
real wholetickdownbase=0.24inch;
real wholetickdownbaseshort=0.36inch;
real t=0;
real dt=1;
real xleft=-2;
real xright=12;
real ybottom=-1;
real ytop=1.2;
label(“$x$”,(xright,0),E);
label(“$y$”,(0,ytop),N);
real i;
for (i=xleft; i<xright; i+=dt) {
draw((i,0)–(i,0.1));
}
for (i=ybottom; i<ytop; i+=0.2) {
draw((0,i)–(0.1,i));
}
draw((0,0)–(xright,0));
draw((0,0)–(0,ytop));
real f(real x) {
return exp(-x)-exp(-x);
}
real g(real x) {
return exp(-x);
}
draw(graph(f,xleft,xright),red);
draw(graph(g,xleft,xright),blue);
draw((xleft,f(xleft))–(xleft,0));
draw((xright,f(xright))–(xright,0));
draw((0,g(0))–(0,ytop));
label(“$e^{-x}$”,(xright,f(xright)),E);
label(“$e^{-x}-e^{-x}$”,(xright,0),E);
label(“$e^{-x}$”,(0,g(0)),N);
[/asy]
The area under the curve is equal to the integral of $f(x)$ from $x=0$ to $x=\infty$. This integral is equal to $e^{-x}$.