If \[\overrightarrow {\rm{A}} = {\rm{xy}}{{{\rm{\hat a}}}_{\rm{x}}} + {{\rm{x}}^2}{{{\rm{\hat a}}}_{\rm{y}}},\,\oint\limits_{\rm{c}} {\overrightarrow {\rm{A}} \cdot {\rm{d}}\overrightarrow l } \] over the path shown in the figure is A. 0 B. \[\frac{2}{{\sqrt 3 }}\] C. 1 D. \[2\sqrt 3 \]

”0″
”[rac{2}{{sqrt
” option3=”1″ option4=”\[2\sqrt 3 \]” correct=”option3″]

The correct answer is $\boxed{0}$.

The circulation of a vector field $\overrightarrow{A}$ around a closed path $\Gamma$ is given by the following integral:

$$\oint_\Gamma \overrightarrow{A} \cdot d\overrightarrow{l}$$

In this case, the vector field is $\overrightarrow{A} = xy\hat{\imath} + x^2\hat{\jmath}$ and the path is a triangle with vertices $(0,0)$, $(1,0)$, and $(1,1)$. The line integral over this path can be evaluated as follows:

$$\oint_\Gamma \overrightarrow{A} \cdot d\overrightarrow{l} = \int_0^1 xy\,dx + \int_0^1 x^2\,dy$$

The first integral can be evaluated using the substitution $u = x$, which gives:

$$\int_0^1 xy\,dx = \int_0^1 u^2\,du = \frac{1}{3}$$

The second integral can be evaluated using the substitution $v = y$, which gives:

$$\int_0^1 x^2\,dy = \int_0^1 v^2\,dv = \frac{1}{3}$$

Therefore, the total line integral is:

$$\oint_\Gamma \overrightarrow{A} \cdot d\overrightarrow{l} = \frac{1}{3} + \frac{1}{3} = 0$$

The other options are incorrect because they do not represent the correct value of the line integral.

Exit mobile version