The correct answer is $\boxed{{1 \over s}\left[ {F\left( s \right) – f\left( 0 \right)} \right]}$.
The Laplace transform of a function $f(t)$ is defined as
$$Lf(t): s = \int_0^\infty f(t) e^{-st} dt$$
The Laplace transform of the integral $\int_0^t f(\tau) d\tau$ is then given by
$$\begin{align} L\left \int_0^t f(\tau) d\tau \right: s &= \int_0^\infty \int_0^t f(\tau) e^{-st} d\tau dt \\ &= \int_0^\infty \frac{t}{t+s} f(t) dt \\ &= \frac{1}{s} \int_0^\infty f(t) \left( 1 – e^{-st} \right) dt \\ &= \frac{1}{s} \left[ F(s) – f(0) \right] \end{align}$$
where $F(s)$ is the Laplace transform of $f(t)$.
Option A is
132.3-11.4 132.3s0 89.4 11.4 132.3c6.3 23.7 24.8 41.5 48.3 47.8C117.2 448 288 448 288 448s170.8 0 213.4-11.5c23.5-6.3 42-24.2 48.3-47.8 11.4-42.9 11.4-132.3 11.4-132.3s0-89.4-11.4-132.3zm-317.5 213.5V175.2l142.7 81.2-142.7 81.2z"/> Subscribe on YouTube