Fora given matrix \[{\text{A}} = \left[ {\begin{array}{*{20}{c}} 2&{ – 2}&3 \\ { – 2}&{ – 1}&6 \\ 1&2&0 \end{array}} \right],\] one of the eigen values is 3. The other two eigen values are A. 2, -5 B. 3, -5 C. 2, 5 D. 3, 5

2, -5
3, -5
2, 5
3, 5

The correct answer is $\boxed{\text{(C)}}$.

To find the eigenvalues of a matrix, we can use the following formula:

$$\lambda = \det(A – \lambda I)$$

where $A$ is the matrix and $\lambda$ is the eigenvalue.

In this case, we have:

$$\begin{align}
\det(A – \lambda I) &= \det \left[ {\begin{array}{
{20}{c}} 2&{ – 2}&3 \ { – 2}&{ – 1}&6 \ 1&2&0 \end{array}} – \lambda \begin{array}{{20}{c}} 1&0&0 \ 0&1&0 \ 0&0&1 \end{array} \right] \
&= \det \left[ {\begin{array}{
{20}{c}} 2-\lambda &{ – 2}&3 \ { – 2}&{ – 1}-\lambda &6 \ 1&2&-\lambda \end{array}} \right] \
&= -\lambda^3 + 4\lambda^2 – 23\lambda + 120 \
&= (\lambda – 3)(\lambda^2 – 4\lambda + 40)
\end{align*}$$

Since $\lambda = 3$ is a root of the quadratic polynomial $\lambda^2 – 4\lambda + 40$, then the other two eigenvalues must be the roots of the quadratic polynomial $(\lambda – 3)(\lambda^2 – 4\lambda + 40) = 0$.

Solving for the roots of this quadratic polynomial, we find that the other two eigenvalues are $\boxed{2, 5}$.

Exit mobile version