For given matrix \[{\text{P}} = \left[ {\begin{array}{*{20}{c}} {4 + 3{\text{i}}}&{ – {\text{i}}} \\ {\text{i}}&{4 – 3{\text{i}}} \end{array}} \right]\] where \[{\text{i}} = \sqrt { – 1} ,\] the inverse of matrix P is A. \[\frac{1}{{24}}\left[ {\begin{array}{*{20}{c}} {4 – 3{\text{i}}}&{\text{i}} \\ { – {\text{i}}}&{4 + 3{\text{i}}} \end{array}} \right]\] B. \[\frac{1}{{25}}\left[ {\begin{array}{*{20}{c}} {\text{i}}&{4 – {\text{i}}} \\ {4 + 3{\text{i}}}&{ – {\text{i}}} \end{array}} \right]\] C. \[\frac{1}{{24}}\left[ {\begin{array}{*{20}{c}} {4 + 3{\text{i}}}&{ – {\text{i}}} \\ {\text{i}}&{4 – 3{\text{i}}} \end{array}} \right]\] D. \[\frac{1}{{25}}\left[ {\begin{array}{*{20}{c}} {4 + 3{\text{i}}}&{ – {\text{i}}} \\ {\text{i}}&{4 – 3{\text{i}}} \end{array}} \right]\]

”[rac{1}{{24}}left[
\]” option2=”\[\frac{1}{{25}}\left[ {\begin{array}{*{20}{c}} {\text{i}}&{4 – {\text{i}}} \\ {4 + 3{\text{i}}}&{ – {\text{i}}} \end{array}} \right]\]” option3=”\[\frac{1}{{24}}\left[ {\begin{array}{*{20}{c}} {4 + 3{\text{i}}}&{ – {\text{i}}} \\ {\text{i}}&{4 – 3{\text{i}}} \end{array}} \right]\]” option4=”\[\frac{1}{{25}}\left[ {\begin{array}{*{20}{c}} {4 + 3{\text{i}}}&{ – {\text{i}}} \\ {\text{i}}&{4 – 3{\text{i}}} \end{array}} \right]\]” correct=”option3″]

The correct answer is $\boxed{\frac{1}{24}\left[\begin{array}{cc}4-3i&i\-i&4+3i\end{array}\right]}$.

To find the inverse of a 2×2 matrix, we can use the formula $A^{-1}=\frac{1}{|A|}\left[\begin{array}{cc}a_{2,2}&-a_{1,2}\\a_{2,1}&a_{1,1}\end{array}\right]$, where $|A|$ is the determinant of $A$.

In this case, $A=\left[\begin{array}{cc}4+3i&-i\\i&4-3i\end{array}\right]$. The determinant of $A$ can be calculated as follows:

$$|A|=4^2-(3i)^2-(-i)(4-3i)=4^2+3^2+4i=25$$

Therefore, the inverse of $A$ is $\frac{1}{|A|}\left[\begin{array}{cc}4-3i&-i\\i&4+3i\end{array}\right]=\frac{1}{25}\left[\begin{array}{cc}4-3i&-i\\i&4+3i\end{array}\right]$.

Exit mobile version