Consider the following equations \[\begin{gathered} \frac{{\partial {\text{V}}\left( {{\text{x, y}}} \right)}}{{\partial {\text{x}}}} = {\text{p}}{{\text{x}}^2} + {{\text{y}}^2} + 2{\text{xy}} \hfill \\ \frac{{\partial {\text{V}}\left( {{\text{x, y}}} \right)}}{{\partial {\text{y}}}} = {{\text{x}}^2} + {\text{q}}{{\text{y}}^2} + 2{\text{xy}} \hfill \\ \end{gathered} \] where p and q are constants. V(x, y) that satisfies the above equations is A. \[{\text{p}}\frac{{{{\text{x}}^3}}}{3} + {\text{q}}\frac{{{{\text{y}}^3}}}{3} + 2{\text{xy}} + 6\] B. \[{\text{p}}\frac{{{{\text{x}}^3}}}{3} + {\text{q}}\frac{{{{\text{y}}^3}}}{3} + 5\] C. \[{\text{p}}\frac{{{{\text{x}}^3}}}{3} + {\text{q}}\frac{{{{\text{y}}^3}}}{3} + {{\text{x}}^2}{\text{y}} + {\text{x}}{{\text{y}}^2} + {\text{xy}}\] D. \[{\text{p}}\frac{{{{\text{x}}^3}}}{3} + {\text{q}}\frac{{{{\text{y}}^3}}}{3} + {{\text{x}}^2}{\text{y}} + {\text{x}}{{\text{y}}^2}\]

”[{ ext{p}}rac{{{{ ext{x}}^3}}}{3}
” option2=”\[{\text{p}}\frac{{{{\text{x}}^3}}}{3} + {\text{q}}\frac{{{{\text{y}}^3}}}{3} + 5\]” option3=”\[{\text{p}}\frac{{{{\text{x}}^3}}}{3} + {\text{q}}\frac{{{{\text{y}}^3}}}{3} + {{\text{x}}^2}{\text{y}} + {\text{x}}{{\text{y}}^2} + {\text{xy}}\]” option4=”\[{\text{p}}\frac{{{{\text{x}}^3}}}{3} + {\text{q}}\frac{{{{\text{y}}^3}}}{3} + {{\text{x}}^2}{\text{y}} + {\text{x}}{{\text{y}}^2}\]” correct=”option1″]

The correct answer is $\boxed{\text{A. }{\text{p}}\frac{{{{\text{x}}^3}}}{3} + {\text{q}}\frac{{{{\text{y}}^3}}}{3} + 2{\text{xy}} + 6}$.

To find a function $V(x, y)$ that satisfies the given equations, we can use the method of undetermined coefficients. We assume that $V(x, y)$ is a linear combination of monomials of the form $x^n y^m$, where $n$ and $m$ are non-negative integers. Then, the partial derivatives of $V$ with respect to $x$ and $y$ can be written as follows:

$$\begin{align}
\frac{\partial V}{\partial x} &= \sum_{n=0}^{\infty} n x^{n-1} y^m \left( \frac{d}{dx} x^n \right) + \sum_{n=0}^{\infty} \left( \frac{d}{dx} y^m \right) x^n y^{m-1} \
&= \sum_{n=1}^{\infty} n x^{n-1} y^m + \sum_{m=1}^{\infty} m y^{m-1} x^n \
&= \sum_{n=1}^{\infty} n x^n y^m + \sum_{m=1}^{\infty} m x^n y^{m-1} \
&= \sum_{n=0}^{\infty} (n+m) x^n y^m,
\end{align
}$$
and

$$\begin{align}
\frac{\partial V}{\partial y} &= \sum_{n=0}^{\infty} n x^n y^{m-1} \left( \frac{d}{dy} y^m \right) + \sum_{n=0}^{\infty} y^m \left( \frac{d}{dy} x^n \right) \
&= \sum_{n=0}^{\infty} n x^n y^{m-1} m + \sum_{n=0}^{\infty} x^n y^{m-1} n \
&= \sum_{n=0}^{\infty} n x^n y^{m-1} m + \sum_{n=0}^{\infty} n x^n y^{m-1} \
&= \sum_{n=0}^{\infty} (n+m) x^n y^m.
\end{align
}$$

Comparing the coefficients of $x^n y^m$ in the equations $\frac{\partial V}{\partial x} = p x^2 + y^2 + 2xy$ and $\frac{\partial V}{\partial y} = x^2 + q y^2 + 2xy$, we find that the coefficients of $x^n y^m$ must satisfy the following equations:

$$\begin{align}
p &= n+m, \
q &= n+m, \
2 &= n+m.
\end{align
}$$

Solving these equations, we find that $n=p$ and $m=q$. Therefore, the function $V(x, y)$ that satisfies the given equations is

$$V(x, y) = \sum_{n=0}^{\infty} (p+q) x^n y^n = \frac{p}{3} x^3 + \frac{q}{3} y^3 + 2xy.$$

Exit mobile version