33. Consider the following statements for continuous-time linear time invariant (LTI) systems. 1. There is no bounded input bounded output (BIBO) stable system with a pole in the right half of the complex plane. 2. There is no causal and BIBO stable system with a pole in the right half of the complex plane. Which one among the following is correct?

Both 1 and 2 are true
Both 1 and 2 are not true
Only 1 is true
Only 2 is true

Detailed SolutionConsider the following statements for continuous-time linear time invariant (LTI) systems. 1. There is no bounded input bounded output (BIBO) stable system with a pole in the right half of the complex plane. 2. There is no causal and BIBO stable system with a pole in the right half of the complex plane. Which one among the following is correct?

35. Two sequences [a, b, c] and [A, B, C] are related as, \[\left[ {\begin{array}{*{20}{c}} A \\ B \\ C \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1&1&1 \\ 1&{W_3^{ – 1}}&{W_3^{ – 2}} \\ 1&{W_3^{ – 2}}&{W_3^{ – 4}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} a \\ b \\ c \end{array}} \right]\] where, $${W_3} = {e^{i\frac{{2\pi }}{3}}}.$$ If another sequence [p, q, r] is derived as, \[\left[ {\begin{array}{*{20}{c}} a \\ b \\ c \end{array}} \right] = \] \[\left[ {\begin{array}{*{20}{c}} 1&1&1 \\ 1&{W_3^1}&{W_3^2} \\ 1&{W_3^2}&{W_3^4} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 1&0&0 \\ 0&{W_3^2}&0 \\ 0&0&{W_3^4} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {A/3} \\ {B/3} \\ {C/3} \end{array}} \right]\] then the relationship between the sequences [p, q, r] and [a, b, c] is

”[p,
= [b, a, c]” option2=”[p, q, r] = [b, c, a]” option3=”[p, q, r] = [c, a, b]” option4=”[p, q, r] = [c, b, a]” correct=”option1″]

Detailed SolutionTwo sequences [a, b, c] and [A, B, C] are related as, \[\left[ {\begin{array}{*{20}{c}} A \\ B \\ C \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1&1&1 \\ 1&{W_3^{ – 1}}&{W_3^{ – 2}} \\ 1&{W_3^{ – 2}}&{W_3^{ – 4}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} a \\ b \\ c \end{array}} \right]\] where, $${W_3} = {e^{i\frac{{2\pi }}{3}}}.$$ If another sequence [p, q, r] is derived as, \[\left[ {\begin{array}{*{20}{c}} a \\ b \\ c \end{array}} \right] = \] \[\left[ {\begin{array}{*{20}{c}} 1&1&1 \\ 1&{W_3^1}&{W_3^2} \\ 1&{W_3^2}&{W_3^4} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 1&0&0 \\ 0&{W_3^2}&0 \\ 0&0&{W_3^4} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {A/3} \\ {B/3} \\ {C/3} \end{array}} \right]\] then the relationship between the sequences [p, q, r] and [a, b, c] is

36. The pole-zero diagram of a causal and stable discrete-time system is shown in the figure. The zero at the origin has multiplicity 4. The impulse response of the system is h[n]. If h[0] = 1, we can conclude

”h[n
is real for all n” option2=”h[n] is purely imaginary for all n” option3=”h[n] is real for only even n” option4=”h[n] is purely imaginary for only odd n” correct=”option1″]

Detailed SolutionThe pole-zero diagram of a causal and stable discrete-time system is shown in the figure. The zero at the origin has multiplicity 4. The impulse response of the system is h[n]. If h[0] = 1, we can conclude

38. Specify the filter type if its voltage transfer function H(s) is given by $$H\left( s \right) = {{K\left( {{s^2} + 1\omega _0^2} \right)} \over {{s^2} + \left( {{{{\omega _0}} \over Q}} \right)s + \omega _0^2}}$$

All pass filter
Low pass filter
Band pass filter
Notch filter

Detailed SolutionSpecify the filter type if its voltage transfer function H(s) is given by $$H\left( s \right) = {{K\left( {{s^2} + 1\omega _0^2} \right)} \over {{s^2} + \left( {{{{\omega _0}} \over Q}} \right)s + \omega _0^2}}$$

39. Consider the system shown in the figure below. The transfer function $$\frac{{Y\left( z \right)}}{{X\left( z \right)}}$$ of the system is

$$ rac{{1 + a{z^{ - 1}}}}{{1 + b{z^{ - 1}}}}$$
$$ rac{{1 + b{z^{ - 1}}}}{{1 + a{z^{ - 1}}}}$$
$$ rac{{1 + a{z^{ - 1}}}}{{1 - b{z^{ - 1}}}}$$
$$ rac{{1 - b{z^{ - 1}}}}{{1 - a{z^{ - 1}}}}$$

Detailed SolutionConsider the system shown in the figure below. The transfer function $$\frac{{Y\left( z \right)}}{{X\left( z \right)}}$$ of the system is

40. The complex envelope of the bandpass signal $$x\left( t \right) = \sqrt 2 \left( {{{\sin \left( {{{\pi t} \over 5}} \right)} \over {{{\pi t} \over 5}}}} \right)\sin \left( {\pi t – {\pi \over 4}} \right),$$ centered about $$f = {1 \over 2}Hz,$$ is

$$left( {{{sin left( {{{pi t} over 5}} ight)} over {{{pi t} over 5}}}{e^{j{pi over 4}}}} ight)$$
$$left( {{{sin left( {{{pi t} over 5}} ight)} over {{{pi t} over 5}}}{e^{ - j{pi over 4}}}} ight)$$
$$sqrt 2 left( {{{sin left( {{{pi t} over 5}} ight)} over {{{pi t} over 5}}}{e^{j{pi over 4}}}} ight)$$
$$sqrt 2 left( {{{sin left( {{{pi t} over 5}} ight)} over {{{pi t} over 5}}}{e^{ - j{pi over 4}}}} ight)$$

Detailed SolutionThe complex envelope of the bandpass signal $$x\left( t \right) = \sqrt 2 \left( {{{\sin \left( {{{\pi t} \over 5}} \right)} \over {{{\pi t} \over 5}}}} \right)\sin \left( {\pi t – {\pi \over 4}} \right),$$ centered about $$f = {1 \over 2}Hz,$$ is