21. A simply supported beam carries varying load from zero at one end and w at the other end. If the length of the beam is a, the maximum bending moment will be A. $$\frac{{{\text{wa}}}}{{27}}$$ B. $$\frac{{{\text{w}}{{\text{a}}^2}}}{{27}}$$ C. $$\frac{{{{\text{w}}^2}{\text{a}}}}{{\sqrt {27} }}$$ D. $$\frac{{{\text{w}}{{\text{a}}^2}}}{{9\sqrt 3 }}$$

$$rac{{{ ext{wa}}}}{{27}}$$
$$rac{{{ ext{w}}{{ ext{a}}^2}}}{{27}}$$
$$rac{{{{ ext{w}}^2}{ ext{a}}}}{{sqrt {27} }}$$
$$rac{{{ ext{w}}{{ ext{a}}^2}}}{{9sqrt 3 }}$$

Detailed SolutionA simply supported beam carries varying load from zero at one end and w at the other end. If the length of the beam is a, the maximum bending moment will be A. $$\frac{{{\text{wa}}}}{{27}}$$ B. $$\frac{{{\text{w}}{{\text{a}}^2}}}{{27}}$$ C. $$\frac{{{{\text{w}}^2}{\text{a}}}}{{\sqrt {27} }}$$ D. $$\frac{{{\text{w}}{{\text{a}}^2}}}{{9\sqrt 3 }}$$

24. Pick up the correct statement from the following: A. For a uniformly distributed load, the shear force varies linearly B. For a uniformly distributed load, B.M. curve is a parabola C. For a load varying linearly, the shear force curve is a parabola D. All the above

For a uniformly distributed load, the shear force varies linearly
For a uniformly distributed load, B.M. curve is a parabola
For a load varying linearly, the shear force curve is a parabola
All the above

Detailed SolutionPick up the correct statement from the following: A. For a uniformly distributed load, the shear force varies linearly B. For a uniformly distributed load, B.M. curve is a parabola C. For a load varying linearly, the shear force curve is a parabola D. All the above

25. The vertical reaction for the arch is A. $$\frac{{{\text{Wa}}}}{{2l}}$$ B. $$\frac{{{\text{W}}l}}{{\text{a}}}$$ C. $$\frac{{{\text{Wa}}}}{l}$$ D. $$\frac{{{\text{W}}{{\text{a}}^2}}}{{2l}}$$

$$rac{{{ ext{Wa}}}}{{2l}}$$
$$rac{{{ ext{W}}l}}{{ ext{a}}}$$
$$rac{{{ ext{Wa}}}}{l}$$
$$rac{{{ ext{W}}{{ ext{a}}^2}}}{{2l}}$$

Detailed SolutionThe vertical reaction for the arch is A. $$\frac{{{\text{Wa}}}}{{2l}}$$ B. $$\frac{{{\text{W}}l}}{{\text{a}}}$$ C. $$\frac{{{\text{Wa}}}}{l}$$ D. $$\frac{{{\text{W}}{{\text{a}}^2}}}{{2l}}$$

26. For the close coil helical spring of the maximum deflection is A. $$\frac{{{\text{W}}{{\text{D}}^3}{\text{n}}}}{{{{\text{d}}^4}{\text{N}}}}$$ B. $$\frac{{2{\text{W}}{{\text{D}}^3}{\text{n}}}}{{{{\text{d}}^4}{\text{N}}}}$$ C. $$\frac{{4{{\text{W}}^2}{{\text{D}}^3}{\text{n}}}}{{{{\text{d}}^4}{\text{n}}}}$$ D. $$\frac{{8{\text{W}}{{\text{D}}^3}{\text{n}}}}{{{{\text{d}}^4}{\text{n}}}}$$

$$rac{{{ ext{W}}{{ ext{D}}^3}{ ext{n}}}}{{{{ ext{d}}^4}{ ext{N}}}}$$
$$rac{{2{ ext{W}}{{ ext{D}}^3}{ ext{n}}}}{{{{ ext{d}}^4}{ ext{N}}}}$$
$$rac{{4{{ ext{W}}^2}{{ ext{D}}^3}{ ext{n}}}}{{{{ ext{d}}^4}{ ext{n}}}}$$
$$rac{{8{ ext{W}}{{ ext{D}}^3}{ ext{n}}}}{{{{ ext{d}}^4}{ ext{n}}}}$$

Detailed SolutionFor the close coil helical spring of the maximum deflection is A. $$\frac{{{\text{W}}{{\text{D}}^3}{\text{n}}}}{{{{\text{d}}^4}{\text{N}}}}$$ B. $$\frac{{2{\text{W}}{{\text{D}}^3}{\text{n}}}}{{{{\text{d}}^4}{\text{N}}}}$$ C. $$\frac{{4{{\text{W}}^2}{{\text{D}}^3}{\text{n}}}}{{{{\text{d}}^4}{\text{n}}}}$$ D. $$\frac{{8{\text{W}}{{\text{D}}^3}{\text{n}}}}{{{{\text{d}}^4}{\text{n}}}}$$

30. Inertia of a rectangular section of width and depth about an axis passing the moment of through C.G. and parallel to its width is A. $$\frac{{{\text{B}}{{\text{D}}^2}}}{6}$$ B. $$\frac{{{\text{B}}{{\text{D}}^3}}}{6}$$ C. $$\frac{{{\text{B}}{{\text{D}}^3}}}{{12}}$$ D. $$\frac{{{{\text{B}}^2}{\text{D}}}}{6}$$

$$rac{{{ ext{B}}{{ ext{D}}^2}}}{6}$$
$$rac{{{ ext{B}}{{ ext{D}}^3}}}{6}$$
$$rac{{{ ext{B}}{{ ext{D}}^3}}}{{12}}$$
$$rac{{{{ ext{B}}^2}{ ext{D}}}}{6}$$

Detailed SolutionInertia of a rectangular section of width and depth about an axis passing the moment of through C.G. and parallel to its width is A. $$\frac{{{\text{B}}{{\text{D}}^2}}}{6}$$ B. $$\frac{{{\text{B}}{{\text{D}}^3}}}{6}$$ C. $$\frac{{{\text{B}}{{\text{D}}^3}}}{{12}}$$ D. $$\frac{{{{\text{B}}^2}{\text{D}}}}{6}$$


Exit mobile version