{a(n)} is a real-valued periodic sequence with a period N. x(n) and X(k) form N-point Discrete Fourier Transform (DFT) pairs. The DFT Y(k) of the sequence $$y\left( n \right) = \frac{1}{N}\sum\limits_{r = 0}^{N – 1} {x\left( r \right)} x\left( {n + r} \right)$$ is

$${left| {Xleft( k ight)} ight|^2}$$
$$rac{1}{2}sumlimits_{r = 0}^{N - 1} {Xleft( r ight)X'left( {k + r} ight)} $$
$$rac{1}{2}sumlimits_{r = 0}^{N - 1} {Xleft( r ight)Xleft( {k + r} ight)} $$
0

The correct answer is $\boxed{\text{C. }\frac{1}{2}\sum\limits_{r = 0}^{N – 1} {X\left( r \right)X\left( {k + r} \right)}}$.

The DFT of a sequence $x(n)$ is defined as

$$X(k) = \sum_{n=0}^{N-1} x(n) e^{-j2\pi nk/N}$$

where $N$ is the length of the sequence.

The sequence $y(n)$ is given by

$$y(n) = \frac{1}{N}\sum_{r=0}^{N-1} x(r) x(n+r)$$

The DFT of $y(n)$ is given by

$$Y(k) = \frac{1}{N}\sum_{n=0}^{N-1} y(n) e^{-j2\pi nk/N}$$

Substituting the expression for $y(n)$ into the above equation, we get

$$Y(k) = \frac{1}{N}\sum_{n=0}^{N-1} \frac{1}{N}\sum_{r=0}^{N-1} x(r) x(n+r) e^{-j2\pi nk/N}$$

$$= \frac{1}{N^2}\sum_{r=0}^{N-1} \sum_{n=0}^{N-1} x(r) x(n+r) e^{-j2\pi nk/N}$$

$$= \frac{1}{N^2}\sum_{r=0}^{N-1} x(r) \left(\sum_{n=0}^{N-1} x(n) e^{-j2\pi rn/N}\right) e^{-j2\pi nk/N}$$

$$= \frac{1}{N^2}\sum_{r=0}^{N-1} x(r) X(r) e^{-j2\pi nk/N}$$

$$= \frac{1}{N}\sum_{r=0}^{N-1} X(r) e^{-j2\pi nk/N} \left(\frac{x(r)}{N}\right)$$

$$= \frac{1}{N}\sum_{r=0}^{N-1} X(r) e^{-j2\pi nk/N} \left(\frac{1}{N}\sum_{n=0}^{N-1} x(n) e^{j2\pi nr/N}\right)$$

$$= \frac{1}{N}\sum_{r=0}^{N-1} X(r) e^{-j2\pi nk/N} \left(X(r)\right)^*$$

$$= \frac{1}{2}\sum_{r=0}^{N-1} X(r) X(k+r)$$

Therefore, the DFT of the sequence $y(n)$ is given by

$$Y(k) = \frac{1}{2}\sum_{r=0}^{N-1} X(r) X(k+r)$$

Exit mobile version