A metal wire of length l and diameter d has a resistance R. What would

A metal wire of length l and diameter d has a resistance R. What would be the resistance of another wire of the same metal and of same length but having double the diameter ?

R
R/4
R/2
2R
This question was previously asked in
UPSC CDS-2 – 2022
The resistance (R) of a wire is given by the formula R = ρ(L/A), where ρ is the resistivity of the material, L is the length, and A is the cross-sectional area. The area A of a circular wire is given by A = π(d/2)^2 = πd^2/4, where d is the diameter. So, R is inversely proportional to the square of the diameter (R ∝ 1/d^2).
If the diameter is doubled (2d), the new area becomes A’ = π(2d)^2/4 = π(4d^2)/4 = πd^2. This means the area becomes four times the original area (A’ = 4A).
Since R ∝ 1/A, the new resistance R’ will be R’ = R / (A’/A) = R / 4.
– Resistance is inversely proportional to the cross-sectional area of the wire.
– Cross-sectional area is proportional to the square of the diameter.
The resistivity (ρ) depends on the material of the wire, which is stated as the same in the question. The length (L) is also stated as the same. Therefore, only the change in diameter affects the resistance in this case.
Exit mobile version