In a sludge digestion tank if the moisture content of sludge V1 litres is reduced from p1% to p2% the volume V2 is A. $$\left( {\frac{{100 + {{\text{p}}_1}}}{{100 – {{\text{p}}_2}}}} \right){{\text{V}}_1}$$ B. $$\left( {\frac{{100 – {{\text{p}}_1}}}{{100 + {{\text{p}}_2}}}} \right){{\text{V}}_1}$$ C. $$\left( {\frac{{100 – {{\text{p}}_1}}}{{100 – {{\text{p}}_2}}}} \right){{\text{V}}_1}$$ D. $$\left( {\frac{{100 + {{\text{p}}_2}}}{{100 – {{\text{p}}_1}}}} \right){{\text{V}}_1}$$

$$left( { rac{{100 + {{ ext{p}}_1}}}{{100 - {{ ext{p}}_2}}}} ight){{ ext{V}}_1}$$
$$left( { rac{{100 - {{ ext{p}}_1}}}{{100 + {{ ext{p}}_2}}}} ight){{ ext{V}}_1}$$
$$left( { rac{{100 - {{ ext{p}}_1}}}{{100 - {{ ext{p}}_2}}}} ight){{ ext{V}}_1}$$
$$left( { rac{{100 + {{ ext{p}}_2}}}{{100 - {{ ext{p}}_1}}}} ight){{ ext{V}}_1}$$

The correct answer is $\boxed{\left( {\frac{{100 – {{\text{p}}_1}}}{{100 – {{\text{p}}_2}}}} \right){{\text{V}}_1}}$.

Let $V_1$ be the initial volume of the sludge, and let $V_2$ be the volume of the sludge after the moisture content has been reduced from $p_1\%$ to $p_2\%$. The mass of the sludge is constant, so we can write

$$V_1 \cdot (100 – p_1) = V_2 \cdot (100 – p_2)$$

Dividing both sides by $V_1$, we get

$$(100 – p_1) = \frac{V_2}{V_1} \cdot (100 – p_2)$$

$$\frac{100 – p_1}{100 – p_2} = \frac{V_2}{V_1}$$

$$V_2 = V_1 \cdot \frac{100 – p_1}{100 – p_2}$$

Therefore, the volume of the sludge after the moisture content has been reduced is given by

$$V_2 = \left( {\frac{{100 – {{\text{p}}_1}}}{{100 – {{\text{p}}_2}}}} \right){{\text{V}}_1}$$

Option A is incorrect because it divides by $100 + p_1$ instead of $100 – p_2$. Option B is incorrect because it divides by $100 – p_1$ instead of $100 + p_2$. Option C is incorrect because it divides by $100 + p_2$ instead of $100 – p_1$.