The power in the signal $$s\left( t \right) = 8\cos \left( {20\pi t – {\pi \over 2}} \right) + 4\,\sin \left( {15\pi t} \right)$$ is

40
41
42
82

The correct answer is $\boxed{\text{A) 40}}$.

The power in a signal is given by the formula:

$$P = \frac{1}{2} \int_{-\infty}^{\infty} |s(t)|^2 dt$$

In this case, the signal is given by:

$$s(t) = 8\cos \left( {20\pi t – {\pi \over 2}} \right) + 4\,\sin \left( {15\pi t} \right)$$

The square of the absolute value of this signal is given by:

$$|s(t)|^2 = 64 \cos^2 \left( {20\pi t – {\pi \over 2}} \right) + 16 \cos \left( {20\pi t – {\pi \over 2}} \right) \sin \left( {15\pi t} \right) + 16 \sin \left( {20\pi t – {\pi \over 2}} \right) \cos \left( {15\pi t} \right) + 16 \sin^2 \left( {15\pi t} \right)$$

The integral of this over all time is given by:

$$\int_{-\infty}^{\infty} |s(t)|^2 dt = 40$$

Therefore, the power in the signal is $\boxed{\text{40}}$.

The other options are incorrect because they do not represent the power in the signal.