If a matrix \[{\text{A}} = \left[ {\begin{array}{*{20}{c}} 2&4 \\ 1&3 \end{array}} \right]\] and matrix \[{\text{B}} = \left[ {\begin{array}{*{20}{c}} 4&6 \\ 5&9 \end{array}} \right]\] the transpose of product of these two matrices i.e., (AB)T is A. \[\left[ {\begin{array}{*{20}{c}} {28}&{19} \\ {34}&{47} \end{array}} \right]\] B. \[\left[ {\begin{array}{*{20}{c}} {19}&{34} \\ {47}&{28} \end{array}} \right]\] C. \[\left[ {\begin{array}{*{20}{c}} {48}&{33} \\ {28}&{19} \end{array}} \right]\] D. \[\left[ {\begin{array}{*{20}{c}} {28}&{19} \\ {48}&{33} \end{array}} \right]\]

”[left[
\]” option2=”\[\left[ {\begin{array}{*{20}{c}} {19}&{34} \\ {47}&{28} \end{array}} \right]\]” option3=”\[\left[ {\begin{array}{*{20}{c}} {48}&{33} \\ {28}&{19} \end{array}} \right]\]” option4=”\[\left[ {\begin{array}{*{20}{c}} {28}&{19} \\ {48}&{33} \end{array}} \right]\]” correct=”option1″]

The correct answer is $\boxed{\left[ {\begin{array}{*{20}{c}} {19}&{47} \ {34}&{28} \end{array}} \right]}$.

To find the transpose of a matrix, you swap the rows and columns. So, the transpose of matrix $A$ is $\left[ {\begin{array}{{20}{c}} {2}&{1} \ {4}&{3} \end{array}} \right]$. The transpose of matrix $B$ is $\left[ {\begin{array}{{20}{c}} {4}&{5} \ {6}&{9} \end{array}} \right]$. Therefore, the transpose of the product of these two matrices is $\left[ {\begin{array}{*{20}{c}} {19}&{47} \ {34}&{28} \end{array}} \right]$.

Here is a step-by-step solution:

  1. Find the product of matrices $A$ and $B$. This is given by the following equation:

$$AB = \left[ {\begin{array}{{20}{c}} {2}&{4} \ {1}&{3} \end{array}} \right] \left[ {\begin{array}{{20}{c}} {4}&{6} \ {5}&{9} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {24}&{42} \ {23}&{41} \end{array}} \right]$$

  1. Transpose the product matrix. This is given by the following equation:

$$(AB)^T = \left[ {\begin{array}{{20}{c}} {24}&{23} \ {42}&{41} \end{array}} \right]^T = \left[ {\begin{array}{{20}{c}} {24}&{42} \ {23}&{41} \end{array}} \right]$$

  1. Swap the rows and columns of the resulting matrix. This gives the following matrix:

$$\left[ {\begin{array}{{20}{c}} {24}&{42} \ {23}&{41} \end{array}} \right]^T = \left[ {\begin{array}{{20}{c}} {24}&{23} \ {42}&{41} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {19}&{47} \ {34}&{28} \end{array}} \right]$$

Therefore, the transpose of the product of matrices $A$ and $B$ is $\boxed{\left[ {\begin{array}{*{20}{c}} {19}&{47} \ {34}&{28} \end{array}} \right]}$.