The value of x for which all the eigen-values of the matrix given below are real is \[\left[ {\begin{array}{*{20}{c}} {10}&{5 + {\text{j}}}&4 \\ {\text{x}}&{20}&2 \\ 4&2&{ – 10} \end{array}} \right]\] A. 5 + j B. 5 – j C. 1 – 5j D. 1 + 5j

5 + j
5 - j
1 - 5j
1 + 5j

The correct answer is $\boxed{5 + j}$.

To find the eigenvalues of a matrix, we can use the characteristic equation. The characteristic equation for a 3×3 matrix is given by:

$$|A – \lambda I| = 0$$

where $A$ is the matrix and $\lambda$ is the eigenvalue.

In this case, we have:

$$\begin{vmatrix} {10}&{5 + {\text{j}}}&4 \ {\text{x}}&{20}&2 \ 4&2&{ – 10} \end{vmatrix} – \lambda \begin{vmatrix} {1}&{0}&{0} \ {0}&{1}&{0} \ {0}&{0}&{1} \end{vmatrix} = 0$$

Expanding the determinant, we get:

$$-\lambda^3 + 35 \lambda^2 – 250 \lambda + 1200 = 0$$

Solving for $\lambda$, we get the following eigenvalues:

$$\lambda = 5 + j, \lambda = 5 – j, \lambda = -10$$

Since the eigenvalues are all real, the value of $x$ for which all the eigenvalues of the matrix are real is $\boxed{5 + j}$.

Here is a brief explanation of each option:

  • Option A: $5 + j$ is an eigenvalue of the matrix.
  • Option B: $5 – j$ is an eigenvalue of the matrix.
  • Option C: $1 – 5j$ is not an eigenvalue of the matrix.
  • Option D: $1 + 5j$ is not an eigenvalue of the matrix.