6, 20, 8, 14, 10, 8, 12, … choose which pair of numbers comes next?

14, 10
2, 18
4, 12
2, 14 E. 14, 14

The answer is $\boxed{\text{B. }2, 18}$.

The sequence is generated by the following rule:

  • Start with the numbers $6$ and $8$.
  • Subtract $2$ from the first number and add $4$ to the second number.
  • Repeat steps 2 and 3.

Therefore, the next pair of numbers is $2$ and $18$.

Here is a table of the first few terms of the sequence:

Number | Rule | Value
——- | ——– | ——–
$1$ | $6$, $8$ | $6 – 2 + 4 = 8$
$2$ | $8 – 2 + 4 = 10$
$3$ | $10 – 2 + 4 = 12$
$4$ | $12 – 2 + 4 = 14$
$5$ | $14 – 2 + 4 = 16$
$6$ | $16 – 2 + 4 = 18$

Option A is incorrect because $14$ and $10$ are not consecutive terms in the sequence.

Option B is correct because $2$ and $18$ are the next consecutive terms in the sequence.

Option C is incorrect because $4$ and $12$ are not consecutive terms in the sequence.

Option D is incorrect because $2$ and $14$ are not consecutive terms in the sequence.

Option E is incorrect because $14$ and $14$ are not consecutive terms in the sequence.