&<–2/”>a >nbsp;
Holography
Holography, means of creating a unique photographic image without the use of a lens. The photographic recording of the image is called a hologram, which appears to be an unrecognizable pattern of stripes and whorls but which—when illuminated by coherent Light, as by a laser beam—organizes the light into a three-dimensional representation of the original object.
An ordinary photographic image records the variations in intensity of light reflected from an object, producing dark areas where less light is reflected and light areas where more light is reflected. Holography, however, records not only the intensity of the light but also its phase, or the degree to which the wave fronts making up the reflected light are in step with each other, or coherent. Ordinary light is incoherent—that is, the phase relationships between the multitude of waves in a beam are completely random; wave fronts of ordinary light waves are not in step.
Dennis Gabor, a Hungarian-born scientist, invented holography in 1948, for which he received the Nobel Prize for Physics more than 20 years later (1971). Gabor considered the possibility of improving the resolving power of the electron Microscope, first by utilizing the electron beam to make a hologram of the object and then by examining this hologram with a beam of coherent light. In Gabor’s original system the hologram was a record of the interference between the light diffracted by the object and a collinear background. This automatically restricts the process to that class of objects that have considerable areas that are transparent. When the hologram is used to form an image, twin images are formed. The light associated with these images is propagating in the same direction, and hence in the plane of one image light from the other image appears as an out-of-focus component. Although a degree of coherence can be obtained by focusing light through a very small pinhole, this technique reduces the light intensity too much for it to serve in holography; therefore, Gabor’s proposal was for several years of only theoretical interest. The development of lasers in the early 1960s suddenly changed the situation. A laser beam has not only a high degree of coherence but high intensity as well.
Of the many kinds of laser beam, two have especial interest in holography: the continuous-wave (CW) laser and the pulsed laser. The CW laser emits a bright, continuous beam of a single, nearly pure colour. The pulsed laser emits an extremely intense, short flash of light that lasts only about 1/100,000,000 of a second. Two scientists in the United States, Emmett N. Leith and Juris Upatnieks of the University of Michigan, applied the CW laser to holography and achieved great success, opening the way to many research applications.
Principles Of Holography
In essence, the problem Gabor conceived in his attempt to improve the electron microscope was the same as the one photographers have confronted in their search for three-dimensional realism in photography. To achieve it, the light streaming from the source must itself be photographed. If the waves of this light, with their multitude of rapidly moving crests and troughs, can be frozen for an instant and photographed, the wave pattern can then be reconstructed and will exhibit the same three-dimensional character as the object from which the light is reflected. Holography accomplishes such a reconstruction by recording the phase content as well as the amplitude content of the reflected light waves of a laser beam.
Continuous-Wave Laser Holography
In a darkened room, a beam of coherent laser light is directed onto object O from source B. The beam is reflected, scattered, and diffracted by the physical features of the object and arrives on a photographic plate at P. Simultaneously, part of the laser beam is split off as an incident, or reference, beam A and is reflected by mirror M also onto plate P. The two beams interfere with each other; that is, their respective amplitudes of waves combine, creating on the photographic plate a complex pattern of stripes and whorls called interference fringes. These fringes consist of alternate light and dark areas. The light areas result when the two beams striking the plate are in step—when crest meets crest and trough meets trough in the waves from the two beams; the beams are then in phase, and so reinforce each other. When the two waves are of equal amplitude but opposite phase—trough meeting crest and crest meeting trough—they cancel each other and a dark area results.
The plate, when developed, is called a hologram. The image on the plate bears no resemblance to the object photographed but contains a record of all the phase and amplitude information present in the beam reflected from the object. The two parts of the laser beam—the direct and the reflected beams—meet on the plate at a wide angle and are recorded as very fine and close-packed interference fringes on the hologram. This pattern of fringes contains all the optical information of the object being photographed.
Pulsed-Laser Holography
A moving object can be made to appear to be at rest when a hologram is produced with the extremely rapid and high-intensity flash of a pulsed ruby laser. The duration of such a pulse can be less than 1/10,000,000 of a second; and, as long as the object does not move more than 1/10 of a wavelength of light during this short time interval, a usable hologram can be obtained. A continuous-wave laser produces a much less intense beam, requiring long exposures; thus it is not suitable when even the slightest motion is present. With the rapidly flashing light source provided by the pulsed laser, exceedingly fast-moving objects can be examined. Chemical reactions often change optical properties of solutions; by means of holography, such reactions can be studied. Holograms created with pulsed lasers have the same three-dimensional characteristics as those made with CW sources.
Pulsed-laser holography has been used in wind-tunnel experiments. Usually high-speed air flow around aerodynamic objects is studied with an optical interferometer (a device for detecting small changes in interference fringes, in this instance caused by variations in air density). Such an instrument is difficult to adjust and hard to keep stable. Furthermore, all of its optical components (mirrors, plates, and the like) in the optical path must be of high quality and sturdy enough to minimize distortion under high gas-flow velocities. The holographic system, however, avoids the stringent requirements of optical interferometry. It records interferometrically refractive-index changes in the air flow created by pressure changes as the gas deflects around the aerodynamic object.
Major Applications Of Holography
Because the real image from the hologram can be viewed by a camera or microscope, it is possible to examine difficult and even inaccessible regions of the original object. This feature renders holography useful for many purposes. A deep, narrow depression on a plane, for example, cannot often be reached by a microscope objective because of working distance limitations. If the detail can be reached by coherent light, however, a hologram can be taken and its image reconstructed. Since this image is aerial, the microscope can be positioned in such a way that it can focus on the required region. In the same way, a camera also can be focused at the required depth and can photograph objects inside a deep transparent chamber.
Many holographic applications exploit the fact that composite repeat holograms of a surface tilted slightly after each exposure can be treated as composite, repeat wave patterns. If two such patterns are matched, a condition arises that is effectively the same as that which exists in ordinary classical two-beam interferometry, in which a single light source is split into two beams and the beams recombined to form interference patterns. Such an arrangement can be set up in several ways; in one, a holographic exposure is made of a surface, then, before the hologram is removed or developed, the surface is slightly tilted and a repeat hologram is made, superimposed on the first hologram. When this double hologram is reconstructed, the object as well as the surface covered by the interference fringes caused by surface irregularities can be seen. These fringes reveal microtopographic information about the object.
Holographic interferometry can be applied successfully to any situation in which the wave front is modified slightly, no matter how complex the surface may be. Elastic deformation effects can be studied by superimposing the two wave fronts on the hologram, reflected before and after the elastic distortion effect has been introduced. When reconstructed, the hologram provides a clear picture of the object, crossed by interference fringes. Even highly complex shapes respond to this approach in a manner that would be impossible in classical interferometry. There is also great flexibility in the choice of methods used to apply distortions, and even these conditions alone often completely exclude optical interferometry. Not only static distortion but also slow dynamic variations can be studied in this manner. And with pulsed ruby lasers, very fast, short-time variations can be studied.
,
Holography is a technique for recording and reconstructing the light waves scattered from an object. The resulting image is called a hologram, and it can be viewed from different angles to provide a three-dimensional view of the object. Holography has many applications, including data storage, interferometry, optical Elements, video, and security.
Holographic data storage is a method of storing information using holograms. Holograms can store a large amount of data, and they are very resistant to damage. This makes them ideal for applications such as archival storage and medical imaging.
Holographic interferometry is a technique for measuring the deformation of an object. A hologram is recorded of the object in its original state, and then a second hologram is recorded of the object after it has been deformed. The two holograms are then compared to determine the amount of deformation that has occurred.
Holographic optical elements (HOEs) are optical elements that are made using holography. HOEs can be used to create a variety of optical effects, such as beam steering, wavefront shaping, and optical filtering.
Holographic video is a type of video that is recorded using holography. Holographic video provides a more realistic and immersive viewing experience than traditional video.
In-line holography is a type of holography that is used to create three-dimensional images. In-line holograms are typically used in security applications, such as banknotes and passports.
Laser holography is a type of holography that uses a laser to create holograms. Laser holograms are typically used in scientific and industrial applications, such as optical metrology and microscopy.
Liquid crystal holography is a type of holography that uses liquid crystals to create holograms. Liquid crystal holograms are typically used in display applications, such as head-mounted displays and projectors.
Multi-wavelength holography is a type of holography that uses multiple wavelengths of light to create holograms. Multi-wavelength holograms are typically used in applications where high-resolution or high-contrast images are required.
Phase-shifting interferometry is a technique for measuring the phase of light waves. Phase-shifting interferometry is typically used in applications such as optical metrology and microscopy.
Photorefractive holography is a type of holography that uses a photorefractive material to create holograms. Photorefractive materials are typically used in applications where high-resolution or high-contrast images are required.
Real-time holography is a type of holography that can be used to create real-time three-dimensional images. Real-time holography is typically used in entertainment and Education applications.
Stereoscopy is a technique for creating the illusion of depth in a two-dimensional image. Stereoscopy is typically used in photography, film, and television.
Transmission holography is a type of holography that uses transmission light to create holograms. Transmission holograms are typically used in applications where high-resolution or high-contrast images are required.
Volume holography is a type of holography that uses a volume of material to create holograms. Volume holograms are typically used in applications where high-resolution or high-contrast images are required.
Holography is a versatile and powerful technique with many applications. It is constantly being developed and improved, and it is likely to have an even greater impact on our lives in the future.
1. What is the difference between a hologram and a photograph?
A hologram is a three-dimensional image that can be created by using a laser to split a beam of light into two parts. One part of the light is used to create an image of the object, while the other part is used to create a reference beam. The two beams are then recombined to create a hologram.
A photograph is a two-dimensional image that is created by using light to expose a piece of film or digital sensor. The image is created by the pattern of light that is reflected or emitted from the object.
2. How does a hologram work?
A hologram works by using the interference of light waves to create an image. When a laser beam is split into two parts, one part is used to illuminate the object and the other part is used to create a reference beam. The two beams are then recombined to create an interference pattern. This interference pattern is what creates the three-dimensional image of the object.
3. What are the different types of holograms?
There are two main types of holograms: transmission holograms and reflection holograms. Transmission holograms are created by using a laser to illuminate the object from behind. The light from the object then passes through the hologram and is projected onto a screen. Reflection holograms are created by using a laser to illuminate the object from the front. The light from the object then reflects off of the hologram and is projected onto a screen.
4. What are the applications of holograms?
Holograms have a wide range of applications, including security, entertainment, and education. Holograms can be used to create security features for documents and products. They can also be used to create three-dimensional images for entertainment purposes. Holograms can also be used to create educational materials that are more engaging and interactive than traditional textbooks.
5. What are the future of holograms?
Holograms are a rapidly developing technology with a wide range of potential applications. In the future, holograms are likely to become even more common in our everyday lives. They could be used to create virtual reality experiences, to provide information in a more engaging way, and to even replace traditional forms of Communication.
Sure, here are some MCQs without mentioning the topic of holography:
-
Which of the following is not a type of light?
(A) Visible light
(B) Infrared light
(C) Ultraviolet light
(D) Holographic light -
Which of the following is not a property of light?
(A) Wavelength
(B) Frequency
(C) Intensity
(D) Holographicity -
Which of the following is not a way to produce light?
(A) Incandescence
(B) Fluorescence
(C) Phosphorescence
(D) Holography -
Which of the following is not a use of light?
(A) Illumination
(B) Communication
(C) Photography
(D) Holography -
Which of the following is not a property of a hologram?
(A) Three-dimensionality
(B) Interference
(C) Diffraction
(D) Holographicity -
Which of the following is not a way to view a hologram?
(A) Direct viewing
(B) Reconstructing with a laser
(C) Reconstructing with a white light
(D) Holographic viewing -
Which of the following is not a type of hologram?
(A) Transmission hologram
(B) Reflection hologram
(C) Volume hologram
(D) Holographic hologram -
Which of the following is not a property of a holographic image?
(A) Real
(B) Virtual
(C) 3D
(D) Holographic -
Which of the following is not a way to create a hologram?
(A) Recording the interference pattern of light
(B) Reconstructing the interference pattern of light
(C) Viewing the interference pattern of light
(D) Holographic creation -
Which of the following is not a use of holograms?
(A) Security
(B) Entertainment
(C) Education
(D) Holographic use